ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-Dimensional Electron Gas with Cold Atoms in Non-Abelian Gauge Potentials

262   0   0.0 ( 0 )
 نشر من قبل J. Y. Vaishnav
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by the possibility of creating non-Abelian fields using cold atoms in optical lattices, we explore the richness and complexity of non-interacting two-dimensional electron gases (2DEGs) in a lattice, subjected to such fields. In the continuum limit, a non-Abelian system characterized by a two-component magnetic flux describes a harmonic oscillator existing in two different charge states (mimicking a particle-hole pair) where the coupling between the states is determined by the non-Abelian parameter, namely the difference between the two components of the magnetic flux. A key feature of the non-Abelian system is a splitting of the Landau energy levels, which broaden into bands, as the spectrum depends explicitly on the transverse momentum. These Landau bands result in a coarse-grained moth, a continuum version of the generalized Hofstadter butterfly. Furthermore, the bands overlap, leading to effective relativistic effects. Importantly, similar features also characterize the corresponding two-dimensional lattice problem when at least one of the components of the magnetic flux is an irrational number. The lattice system with two competing magnetic fluxes penetrating the unit cell provides a rich environment in which to study localization phenomena. Some unique aspects of the transport properties of the non-Abelian system are the possibility of inducing localization by varying the quasimomentum, and the absence of localization of certain zero-energy states exhibiting a linear energy-momentum relation. Furthermore, non-Abelian systems provide an interesting localization scenario where the localization transition is accompanied by a transition from relativistic to non-relativistic theory.



قيم البحث

اقرأ أيضاً

346 - Bikash Padhi 2016
In this article we present a pedagogical discussion of some of the optomechanical properties of a high finesse cavity loaded with ultracold atoms in laser induced synthetic gauge fields of different types. Essentially, the subject matter of this arti cle is an amalgam of two sub-fields of atomic molecular and optical (AMO) physics namely, the cavity optomechanics with ultracold atoms and ultracold atoms in synthetic gauge field. After providing a brief introduction to either of these fields we shall show how and what properties of these trapped ultracold atoms can be studied by looking at the cavity (optomechanical or transmission) spectrum. In presence of abelian synthetic gauge field we discuss the cold-atom analogue of Shubnikov de Haas oscillation and its detection through cavity spectrum. Then, in the presence of a non-abelian synthetic gauge field (spin-orbit coupling), we see when the electromagnetic field inside the cavity is quantized, it provides a quantum optical lattice for the atoms, leading to the formation of different quantum magnetic phases. We also discuss how these phases can be explored by studying the cavity transmission spectrum.
The Landau levels of cold atomic gases in non-Abelian gauge fields are analyzed. In particular we identify effects on the energy spectrum and density distribution which are purely due to the non-Abelian character of the fields. We investigate in deta il non-Abelian generalizations of both the Landau and the symmetric gauge. Finally, we discuss how these non-Abelian Landau and symmetric gauges may be generated by means of realistically feasible lasers in a tripod scheme.
We report the experimental realization of a non-galvanic, primary thermometer capable of measuring the electron temperature of a two-dimensional electron gas with negligible thermal load. Such a thermometer consists of a quantum dot whose temperature -dependent, single-electron transitions are detected by means of a quantum-point-contact electrometer. Its operating principle is demonstrated for a wide range of electron temperatures from 40 to 800 mK. This noninvasive thermometry can find application in experiments addressing the thermal properties of micrometer-scale mesoscopic electron systems, where heating or cooling electrons requires relatively low thermal budgets.
Nowadays it is experimentally feasible to create artificial, and in particular, non-Abelian gauge potentials for ultracold atoms trapped in optical lattices. Motivated by this fact, we investigate the fundamental properties of an ultracold Fermi gas in a non-Abelian U(2) gauge potential characterized by a constant Wilson loop. Under this specific condition, the energy spectrum exhibits a robust band structure with large gaps and reveals a new fractal figure. The transverse conductivity is related to topological invariants and is shown to be quantized when the Fermi energy lies inside a gap of the spectrum. We demonstrate that the analogue of the integer quantum Hall effect for neutral atoms survives the non-Abelian coupling and leads to a striking fractal phase diagram. Moreover, this coupling induces an anomalous Hall effect as observed in graphene.
The dynamics of ultracold neutral atoms subject to a non-Abelian gauge field is investigated. In particular we analyze in detail a simple experimental scheme to achieve a constant, but non-Abelian gauge field, and discuss in the frame of this gauge f ield the non-Abelian Aharanov-Bohm effect. In the last part of this paper, we discuss intrinsic non-Abelian effects in the dynamics of cold atomic wavepackets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا