ﻻ يوجد ملخص باللغة العربية
The first clue, in the theory of relativity, the 4-vector force acting on a particle is orthogonal to the 4-vector velocity of the particle, this orthogonality means that there is some difference between the orthogonality and the usual statement: the Coulombs force (or gravitational force) acts along the line joining a couple of particles (in usual 3D space), so the direction of 4-vector Coulombs force is carefully investigated, it is found that Maxwells equations can be derived from classical Coulombs force and the orthogonality. The second clue, a 4-vector force has 4 components, because of the orthogonality of 4-vector force and 4-vector velocity, the number of independent components of the 4-vector force reduces to 3, however we prove that 4-vector Coulombs force can merely provide 2 independent components, this situation means that there is an undefined component accompanying the 4-vector Coulombs force, hinting that this missing undefined component is a hidden variable. The third clue, the best way to study the hidden variable is to establish a new concept: Z-space, in which the undefined component of 4-vector Coulombs force can be clearly defined as the hidden variable for the quantum mechanics. At the last, the undefined component is regarded as a fluctuating source that contributes to Lorentz force, so that the quantum wave equation can be derived out in the ensemble space of particle motion from the relativistic Newtons second law.
The goal of this paper is to re-express QFT in terms of two classical fields living in ordinary space with single extra dimension. The role of the first classical field is to set up an injection from the set of values of extra dimension into the set
Constructing local hidden variable (LHV) models for entangled quantum states is challenging, as the model should reproduce quantum predictions for all possible local measurements. Here we present a simple method for building LHV models, applicable to
Models of complex networks often incorporate node-intrinsic properties abstracted as hidden variables. The probability of connections in the network is then a function of these variables. Real-world networks evolve over time, and many exhibit dynamic
It was shown by Bell that no local hidden variable model is compatible with quantum mechanics. If, instead, one permits the hidden variables to be entirely non-local, then any quantum mechanical predictions can be recovered. In this paper, we conside
Entanglement allows for the nonlocality of quantum theory, which is the resource behind device-independent quantum information protocols. However, not all entangled quantum states display nonlocality, and a central question is to determine the precis