ترغب بنشر مسار تعليمي؟ اضغط هنا

The SEGUE Stellar Parameter Pipeline. II. Validation with Galactic Globular and Open Clusters

140   0   0.0 ( 0 )
 نشر من قبل Timothy C. Beers
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Y.S. Lee




اسأل ChatGPT حول البحث

We validate the performance and accuracy of the current SEGUE (Sloan Extension for Galactic Understanding and Exploration) Stellar Parameter Pipeline (SSPP), which determines stellar atmospheric parameters (effective temperature, surface gravity, and metallicity) by comparing derived overall metallicities and radial velocities from selected likely members of three globular clusters (M 13, M 15, and M 2) and two open clusters (NGC 2420 and M 67) to the literature values. Spectroscopic and photometric data obtained during the course of the original Sloan Digital Sky Survey (SDSS-I) and its first extension (SDSS-II/SEGUE) are used to determine stellar radial velocities and atmospheric parameter estimates for stars in these clusters. Based on the scatter in the metallicities derived for the members of each cluster, we quantify the typical uncertainty of the SSPP values, sigma([Fe/H]) = 0.13 dex for stars in the range of 4500 K < Teff < 7500 K and 2.0 < log g < 5.0, at least over the metallicity interval spanned by the clusters studied (-2.3 < [Fe/H] < 0). The surface gravities and effective temperatures derived by the SSPP are also compared with those estimated from the comparison of the color-magnitude diagrams with stellar evolution models; we find satisfactory agreement. At present, the SSPP underestimates [Fe/H] for near-solar-metallicity stars, represented by members of M 67 in this study, by about 0.3 dex.



قيم البحث

اقرأ أيضاً

143 - Y.S. Lee 2007
We describe the development and implementation of the SEGUE (Sloan Extension for Galactic Exploration and Understanding) Stellar Parameter Pipeline (SSPP). The SSPP derives, using multiple techniques, radial velocities and the fundamental stellar atm ospheric parameters (effective temperature, surface gravity, and metallicity) for AFGK-type stars, based on medium-resolution spectroscopy and $ugriz$ photometry obtained during the course of the original Sloan Digital Sky Survey (SDSS-I) and its Galactic extension (SDSS-II/SEGUE). The SSPP also provides spectral classification for a much wider range of stars, including stars with temperatures outside of the window where atmospheric parameters can be estimated with the current approaches. This is Paper I in a series of papers on the SSPP; it provides an overview of the SSPP, and initial tests of its performance using multiple data sets. Random and systematic errors are critically examined for the current version of the SSPP, which has been used for the sixth public data release of the SDSS (DR-6).
155 - C. Allende Prieto 2007
We report high-resolution spectroscopy of 125 field stars previously observed as part of the Sloan Digital Sky Survey and its program for Galactic studies, the Sloan Extension for Galactic Understanding and Exploration (SEGUE). These spectra are used to measure radial velocities and to derive atmospheric parameters, which we compare with those reported by the SEGUE Stellar Parameter Pipeline (SSPP). The SSPP obtains estimates of these quantities based on SDSS ugriz photometry and low-resolution (R = 2000) spectroscopy. For F- and G-type stars observed with high signal-to-noise ratios (S/N), we empirically determine the typical random uncertainties in the radial velocities, effective temperatures, surface gravities, and metallicities delivered by the SSPP to be 2.4 km/s, 130 K (2.2%), 0.21 dex, and 0.11 dex, respectively, with systematic uncertainties of a similar magnitude in the effective temperatures and metallicities. We estimate random errors for lower S/N spectra based on numerical simulations.
We present griz observations for the clusters M92, M13 and NGC 6791 and gr photometry for M71, Be 29 and NGC 7789. In addition we present new membership identifications for all these clusters, which have been observed spectroscopically as calibrators for the SDSS/SEGUE survey; this paper focuses in particular on the red giant branch stars in the clusters. In a number of cases, these giants were too bright to be observed in the normal SDSS survey operations, and we describe the procedure used to obtain spectra for these stars. For M71, also present a new variable reddening map and a new fiducial for the gr giant branch. For NGC 7789, we derived a transformation from Teff to g-r for giants of near solar abundance, using IRFM Teff measures of stars with good ugriz and 2MASS photometry and SEGUE spectra. The result of our analysis is a robust list of known cluster members with correctly dereddened and (if needed) transformed gr photometry for crucial calibration efforts for SDSS and SEGUE.
We present a method for the determination of [alpha/Fe] ratios from low-resolution (R = 2000) SDSS/SEGUE stellar spectra. By means of a star-by-star comparison with degraded spectra from the ELODIE spectral library and with a set of moderately high-r esolution (R = 15,000) and medium-resolution (R = 6000) spectra of SDSS/SEGUE stars, we demonstrate that we are able to measure [alpha/Fe] from SDSS/SEGUE spectra (with S/N > 20/1) to a precision of better than 0.1 dex, for stars with atmospheric parameters in the range Teff = [4500, 7000] K, log g = [1.5, 5.0], and [Fe/H] = [-1.4, +0.3], over the range [alpha/Fe] = [-0.1, +0.6]. For stars with [Fe/H] < -1.4, our method requires spectra with slightly higher signal-to-noise to achieve this precision (S/N > 25/1). Over the full temperature range considered, the lowest metallicity star for which a confident estimate of [alpha/Fe] can be obtained from our approach is [Fe/H] ~ -2.5; preliminary tests indicate that a metallicity limit as low as [Fe/H] ~ -3.0 may apply to cooler stars. As a further validation of this approach, weighted averages of [alpha/Fe] obtained for SEGUE spectra of likely member stars of Galactic globular clusters (M15, M13, and M71) and open clusters (NGC 2420, M67, and NGC 6791) exhibit good agreement with the values of [alpha/Fe] from previous studies. The results of the comparison with NGC 6791 imply that the metallicity range for the method may extend to ~ +0.5.
We perform an extensive test of theoretical stellar models for main-sequence stars in ugriz, using cluster fiducial sequences obtained in the previous paper of this series. We generate a set of isochrones using the Yale Rotating Evolutionary Code (YR EC) with updated input physics, and derive magnitudes and colors in ugriz from MARCS model atmospheres. These models match cluster main sequences over a wide range of metallicity within the errors of the adopted cluster parameters. However, we find a large discrepancy of model colors at the lower main sequence (Teff < ~4500 K) for clusters at and above solar metallicity. We also reach similar conclusions using the theoretical isochrones of Girardi et al. and Dotter et al., but our new models are generally in better agreement with the data. Using our theoretical isochrones, we also derive main-sequence fitting distances and turn-off ages for five key globular clusters, and demonstrate the ability to derive these quantities from photometric data in the Sloan Digital Sky Survey. In particular, we exploit multiple color indices (g - r, g - i, and g - z) in the parameter estimation, which allows us to evaluate internal systematic errors. Our distance estimates, with an error of sigma(m - M) = 0.03-0.11 mag for individual clusters, are consistent with Hipparcos-based subdwarf fitting distances derived in the Johnson-Cousins or Stromgren photometric systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا