ﻻ يوجد ملخص باللغة العربية
We analyse the scattering of sine-Gordon breathers on a square potential well. We show that the scattering process depends not only on the vibration frequency of the breather and its incoming speed but also on its phase as well as the depth and width of the well. We show that the breather can pass through the well and exit with a speed different, sometime larger, from the initial one. It can also be trapped and very slowly decay inside the well or bounce out of the well and go back to where it came from. We also show that the breather can split into a kink and an anti-kink pair when it hits the well.
We consider a parabolic sine-Gordon model with periodic boundary conditions. We prove a fundamental maximum principle which gives a priori uniform control of the solution. In the one-dimensional case we classify all bounded steady states and exhibit
Nonlinear space-time dynamics, defined in terms of celebrated solitonic equations, brings indispensable tools for understanding, prediction and control of complex behaviors in both physical and life sciences. In this paper, we review sine-Gordon soli
We discuss the quench dynamics near a quantum critical point focusing on the sine-Gordon model as a primary example. We suggest a unified approach to sudden and slow quenches, where the tuning parameter $lambda(t)$ changes in time as $lambda(t)sim up
We analyze the diffusive motion of kink solitons governed by the thermal sine-Gordon equation. We analytically calculate the correlation function of the position of the kink center as well as the diffusion coefficient, both up to second-order in temp
We study whether or not sine-Gordon kinks exhibit internal modes or ``quasimodes. By considering the response of the kinks to ac forces and initial distortions, we show that neither intrinsic internal modes nor ``quasimodes exist in contrast to previ