ﻻ يوجد ملخص باللغة العربية
Motivation: Measurements of gene expression over time enable the reconstruction of transcriptional networks. However, Bayesian networks and many other current reconstruction methods rely on assumptions that conflict with the differential equations that describe transcriptional kinetics. Practical approximations of kinetic models would enable inferring causal relationships between genes from expression data of microarray, tag-based and conventional platforms, but conclusions are sensitive to the assumptions made. Results: The representation of a sufficiently large portion of genome enables computation of an upper bound on how much confidence one may place in influences between genes on the basis of expression data. Information about which genes encode transcription factors is not necessary but may be incorporated if available. The methodology is generalized to cover cases in which expression measurements are missing for many of the genes that might control the transcription of the genes of interest. The assumption that the gene expression level is roughly proportional to the rate of translation led to better empirical performance than did either the assumption that the gene expression level is roughly proportional to the protein level or the Bayesian model average of both assumptions. Availability: http://www.oisb.ca points to R code implementing the methods (R Development Core Team 2004). Supplementary information: http://www.davidbickel.com
Inferring functional relationships within complex networks from static snapshots of a subset of variables is a ubiquitous problem in science. For example, a key challenge of systems biology is to translate cellular heterogeneity data obtained from si
Transcriptional delay can significantly impact the dynamics of gene networks. Here we examine how such delay affects bistable systems. We investigate several stochastic models of bistable gene networks and find that increasing delay dramatically incr
Graph theoretical analyses of nervous systems usually omit the aspect of connection polarity, due to data insufficiency. The chemical synapse network of Caenorhabditis elegans is a well-reconstructed directed network, but the signs of its connections
Complex biological functions are carried out by the interaction of genes and proteins. Uncovering the gene regulation network behind a function is one of the central themes in biology. Typically, it involves extensive experiments of genetics, biochem
Dendrograms are a way to represent evolutionary relationships between organisms. Nowadays, these are inferred based on the comparison of genes or protein sequences by taking into account their differences and similarities. The genetic material of cho