ترغب بنشر مسار تعليمي؟ اضغط هنا

Cinderella - Comparison of INDEpendent RELative Least-squares Amplitudes

204   0   0.0 ( 0 )
 نشر من قبل Piet Reegen
 تاريخ النشر 2008
والبحث باللغة English




اسأل ChatGPT حول البحث

The identification of increasingly smaller signal from objects observed with a non-perfect instrument in a noisy environment poses a challenge for a statistically clean data analysis. We want to compute the probability of frequencies determined in various data sets to be related or not, which cannot be answered with a simple comparison of amplitudes. Our method provides a statistical estimator for a given signal with different strengths in a set of observations to be of instrumental origin or to be intrinsic. Based on the spectral significance as an unbiased statistical quantity in frequency analysis, Discrete Fourier Transforms (DFTs) of target and background light curves are comparatively examined. The individual False-Alarm Probabilities are used to deduce conditional probabilities for a peak in a target spectrum to be real in spite of a corresponding peak in the spectrum of a background or of comparison stars. Alternatively, we can compute joint probabilities of frequencies to occur in the DFT spectra of several data sets simultaneously but with different amplitude, which leads to composed spectral significances. These are useful to investigate a star observed in different filters or during several observing runs. The composed spectral significance is a measure for the probability that none of coinciding peaks in the DFT spectra under consideration are due to noise. Cinderella is a mathematical approach to a general statistical problem. Its potential reaches beyond photometry from ground or space: to all cases where a quantitative statistical comparison of periodicities in different data sets is desired. Examples for the composed and the conditional Cinderella mode for different observation setups are presented.



قيم البحث

اقرأ أيضاً

Penalization procedures often suffer from their dependence on multiplying factors, whose optimal values are either unknown or hard to estimate from the data. We propose a completely data-driven calibration algorithm for this parameter in the least-sq uares regression framework, without assuming a particular shape for the penalty. Our algorithm relies on the concept of minimal penalty, recently introduced by Birge and Massart (2007) in the context of penalized least squares for Gaussian homoscedastic regression. On the positive side, the minimal penalty can be evaluated from the data themselves, leading to a data-driven estimation of an optimal penalty which can be used in practice; on the negative side, their approach heavily relies on the homoscedastic Gaussian nature of their stochastic framework. The purpose of this paper is twofold: stating a more general heuristics for designing a data-driven penalty (the slope heuristics) and proving that it works for penalized least-squares regression with a random design, even for heteroscedastic non-Gaussian data. For technical reasons, some exact mathematical results will be proved only for regressogram bin-width selection. This is at least a first step towards further results, since the approach and the method that we use are indeed general.
In this paper we describe active set type algorithms for minimization of a smooth function under general order constraints, an important case being functions on the set of bimonotone r-by-s matrices. These algorithms can be used, for instance, to est imate a bimonotone regression function via least squares or (a smooth approximation of) least absolute deviations. Another application is shrinkage estimation in image denoising or, more generally, regression problems with two ordinal factors after representing the data in a suitable basis which is indexed by pairs (i,j) in {1,...,r}x{1,...,s}. Various numerical examples illustrate our methods.
Aims. To develop a fully Bayesian least squares deconvolution (LSD) that can be applied to the reliable detection of magnetic signals in noise-limited stellar spectropolarimetric observations using multiline techniques. Methods. We consider LSD under the Bayesian framework and we introduce a flexible Gaussian Process (GP) prior for the LSD profile. This prior allows the result to automatically adapt to the presence of signal. We exploit several linear algebra identities to accelerate the calculations. The final algorithm can deal with thousands of spectral lines in a few seconds. Results. We demonstrate the reliability of the method with synthetic experiments and we apply it to real spectropolarimetric observations of magnetic stars. We are able to recover the magnetic signals using a small number of spectral lines, together with the uncertainty at each velocity bin. This allows the user to consider if the detected signal is reliable. The code to compute the Bayesian LSD profile is freely available.
161 - Qiang Sun , Rui Mao , Wen-Xin Zhou 2021
This paper proposes the capped least squares regression with an adaptive resistance parameter, hence the name, adaptive capped least squares regression. The key observation is, by taking the resistant parameter to be data dependent, the proposed esti mator achieves full asymptotic efficiency without losing the resistance property: it achieves the maximum breakdown point asymptotically. Computationally, we formulate the proposed regression problem as a quadratic mixed integer programming problem, which becomes computationally expensive when the sample size gets large. The data-dependent resistant parameter, however, makes the loss function more convex-like for larger-scale problems. This makes a fast randomly initialized gradient descent algorithm possible for global optimization. Numerical examples indicate the superiority of the proposed estimator compared with classical methods. Three data applications to cancer cell lines, stationary background recovery in video surveillance, and blind image inpainting showcase its broad applicability.
Alternating least squares is the most widely used algorithm for CP tensor decomposition. However, alternating least squares may exhibit slow or no convergence, especially when high accuracy is required. An alternative approach is to regard CP decompo sition as a nonlinear least squares problem and employ Newton-like methods. Direct solution of linear systems involving an approximated Hessian is generally expensive. However, recent advancements have shown that use of an implicit representation of the linear system makes these methods competitive with alternating least squares. We provide the first parallel implementation of a Gauss-Newton method for CP decomposition, which iteratively solves linear least squares problems at each Gauss-Newton step. In particular, we leverage a formulation that employs tensor contractions for implicit matrix-vector products within the conjugate gradient method. The use of tensor contractions enables us to employ the Cyclops library for distributed-memory tensor computations to parallelize the Gauss-Newton approach with a high-level Python implementation. In addition, we propose a regularization scheme for Gauss-Newton method to improve convergence properties without any additional cost. We study the convergence of variants of the Gauss-Newton method relative to ALS for finding exact CP decompositions as well as approximate decompositions of real-world tensors. We evaluate the performance of sequential and parall
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا