ترغب بنشر مسار تعليمي؟ اضغط هنا

Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study

134   0   0.0 ( 0 )
 نشر من قبل Ortwin Leenaerts
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by the recent realization of graphene sensors to detect individual gas molecules, we investigate the adsorption of H2O, NH3, CO, NO2, and NO on a graphene substrate using first-principles calculations. The optimal adsorption position and orientation of these molecules on the graphene surface is determined and the adsorption energies are calculated. Molecular doping, i.e. charge transfer between the molecules and the graphene surface, is discussed in light of the density of states and the molecular orbitals of the adsorbates. The efficiency of doping of the different molecules is determined and the influence of their magnetic moment is discussed.



قيم البحث

اقرأ أيضاً

Chemisorption of CO on the stepped Cu(211) surface is studied within ab-initio density functional theory (DFT) and scanning tunneling microscopy (STM) imaging as well as manipulation experiments. Theoretically we focus on the experimentally observed ordered (2x1) and (3x1) CO-phases at coverages 1/3, 1/2 and 2/3 monolayer (ML). To obtain also information for isolated CO molecules found randomly distributed at low coverages, we also performed calculations for a hypothetical (3x1) phase with 1/3 ML. The adsorption geometry, the stretching frequencies, the work functions and adsorption energies of the CO molecules in the different phases are presented and compared to experimental data. Initially and up to a coverage of 1/2 ML CO adsorbs upright on the on-top sites at step edge atoms. Determining the most favorable adsorption geometry for the 2/3 ML ordered phase turned out to be nontrivial both from the experimental and the theoretical point of view. Experimentally, both top-bridge and top-top configurations were reported, whereby only the top-top arrangement was firmly established. The calculated adsorption energies and the stretching frequencies favor the top-bridge configuration. The possible existence of both configurations at 2/3 ML is critically discussed on the basis of the presently accessible experimental and theoretical data. In addition, we present observations of STM manipulation experiments and corresponding theoretical results, which show that CO adsorbed on-top of a single Cu-adatom, which is manipulated to a location close to the lower step edge, is stronger bound than CO on-top of a step edge atom.
By using first-principles calculations, we investigated the effects of graphene/boron nitride (BN) encapsulation, surface functionalization by metallic elements (K, Al, Mg and typical transition metals) and molecules (tetracyanoquinodimethane (TCNQ) and tetracyanoethylene (TCNE)) on the electronic properties of layered indium selenide (InSe). It was found that an opposite trend of charge transfer is possible for graphene (donor) and BN (acceptor), which is dramatically different from phosphorene where both graphene and BN play the same role (donor). For InSe/BN heterostructure, a change of the interlayer distance due to an out-of-plane compression can effectively modulate the band gap. Strong acceptor abilities to InSe were found for the TCNE and TCNQ molecules. For K, Al and Mg-doped monolayer InSe, the charge transfer from K and Al atoms to the InSe surface was observed, causing an n-type conduction of InSe, while p-type conduction of InSe observed in case of the Mg-doping. The atomically thin structure of InSe enables the possible observation and utilization of the dopant-induced vertical electric field across the interface. A proper adoption of the n- or p-type dopants allows for the modulation of the work function, the Fermi level pinning, the band bending, and the photo-adsorbing efficiency near the InSe surface/interface. Investigation on the adsorption of transition metal atoms on InSe showed that Ti-, V-, Cr-, Mn-, Co-adsorbed InSe are spin-polarized, while Ni-, Cu-, Pd-, Ag- and Au-adsorbed InSe are non-spin-polarized. Our results shed lights on the possible ways to protect InSe structure and modulate its electronic properties for nanoelectronics and electrochemical device applications.
The electronic structure modifications of WSe2 upon NO2-adsorption at room and low temperatures were studied by means of photoelectron spectroscopy. We found only moderate changes in the electronic structure, which are manifested as an upward shift o f the WSe2-related bands to the smaller binding energies. The observed effects are modelled within the density functional theory approach, where a weak adsorption energy of gas molecules on the surface of WSe2 was deduced. The obtained experimental data are explained as a valence bands polarisation effect, which causes their energy shift depending on the adsorption geometry and the formed dipole moment.
Solid solution BiFe1-xCoxO3 shows anti-ferromagnetic order and pyroelectric order, simultaneously. It has been known that BiFe1-xCoxO3 exhibits a structural phase transition between monoclinic and tetragonal phases as x increases. This kinds of trans ition is often called morphotoropic phase boundary, which is well known to take place in a representative piezoelectric oxide, PbZr1-xTixO3. In order to theoretically understand the piezoelectric property in BiFe1-xCoxO3, we performed ab-initio electronic-structure calculations and studied the structural stability, the magnetic property, and the electronic polarization by means of super-cell approach. It turns out that the large electric polarization and the particular pyramidal coordination suppress the response of the electric polarization under strain. A way to enhance the piezoelectric effect in BiFe1-xCoxO3 is proposed.
First-principles calculations using density functional theory based on norm-conserving pseudopotentials have been performed to investigate the Mg adsorption on the Si(001) surface for 1/4, 1/2 and 1 monolayer coverages. For both 1/4 and 1/2 ML covera ges it has been found that the most favorable site for the Mg adsorption is the cave site between two dimer rows consistent with the recent experiments. For the 1 ML coverage we have found that the most preferable configuration is when both Mg atoms on 2x1 reconstruction occupy the two shallow sites. We have found that the minimum energy configurations for 1/4 ML coverage is a 2x2 reconstruction while for the 1/2 and 1 ML coverages they are 2x1.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا