ﻻ يوجد ملخص باللغة العربية
The evolution of stellar collision products in cluster simulations has usually been modelled using simplified prescriptions. Such prescriptions either replace the collision product with an (evolved) main sequence star, or assume that the collision product was completely mixed during the collision. It is known from hydrodynamical simulations of stellar collisions that collision products are not completely mixed, however. We have calculated the evolution of stellar collision products and find that they are brighter than normal main sequence stars of the same mass, but not as blue as models that assume that the collision product was fully mixed during the collision.
It has become clear in recent years that globular clusters are not simple stellar populations, but may host chemically distinct sub-populations, typically with an enhanced helium abundance. These helium-rich populations can make up a substantial frac
We have used high resolution spectra obtained with the spectrograph FLAMES at the ESO Very Large Telescope to determine the kinematical properties and the abundance patterns of 20 blue straggler stars (BSSs) in the globular cluster M4. We found that
Based on spectrophotometric observations from the Guillermo Haro Observatory (Cananea, Mexico), a study of the spectral properties of the complete sample of 24 blue straggler stars (BSs) in the old Galactic open cluster M67 (NGC 2682) is presented. A
Stellar collisions are an important formation channel for blue straggler stars in globular and old open clusters. Hydrodynamical simulations have shown that the remnants of such collisions are out of thermal equilibrium, are not strongly mixed and ca
We propose a formation mechanism for twin blue stragglers (BSs) in compact binaries that involves mass transfer from an evolved outer tertiary companion on to the inner binary via a circumbinary disk. We apply this scenario to the observed double BS