ﻻ يوجد ملخص باللغة العربية
V.I. Arnold [Russian Math. Surveys, 26 (no. 2), 1971, pp. 29-43] gave a miniversal deformation of matrices of linear operators; that is, a simple canonical form, to which not only a given square matrix A, but also the family of all matrices close to A, can be reduced by similarity transformations smoothly depending on the entries of matrices. We study miniversal deformations of quiver representations and obtain a miniversal deformation of matrices of chains of linear mappings.
We study systems of linear and semilinear mappings considering them as representations of a directed graph $G$ with full and dashed arrows: a representation of $G$ is given by assigning to each vertex a complex vector space, to each full arrow a line
We consider the problem of classifying oriented cycles of linear mappings $F^pto F^qtodotsto F^rto F^p$ over a field $F$ of complex or real numbers up to homeomorphisms in the spaces $F^p,F^q,dots,F^r$. We reduce it to the problem of classifying line
We give a method for constructing a regularizing decomposition of a matrix pencil, which is formulated in terms of the linear mappings. We prove that two pencils are topologically equivalent if and only if their regularizing decompositions coincide u
V.I. Arnold (1971) constructed a simple normal form to which all complex matrices $B$ in a neighborhood $U$ of a given square matrix $A$ can be reduced by similarity transformations that smoothly depend on the entries of $B$. We calculate the radius
Let $k$ be a field and let $Lambda$ be a finite dimensional $k$-algebra. We prove that every bounded complex $V^bullet$ of finitely generated $Lambda$-modules has a well-defined versal deformation ring $R(Lambda,V^bullet)$ which is a complete local c