ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray properties of a sample of polar-scattered Seyfert galaxies

225   0   0.0 ( 0 )
 نشر من قبل Elena Jimenez-Bailon
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف E. Jimenez-Bailon




اسأل ChatGPT حول البحث

We present the results on an XMM-Newton systematic analysis of a sample of nine Seyfert 1 galaxies. When observed in polarised light, the spectra of the selected sources are similar to those of Seyfert 2 galaxies. This peculiarity strongly suggests that these AGN are viewed with an inclination comparable with the torus opening angle. Our results are consistent with this scenario and, taking advantage of this favourable geometrical condition, we were able to investigate in detail the physical properties and the distribution of the circumnuclear gas in these sources.



قيم البحث

اقرأ أيضاً

The nuclei of Seyfert 1 galaxies exhibit a range of optical polarization characteristics that can be understood in terms of two scattering regions producing orthogonal polarizations: an extended polar scattering region (PSR) and a compact equatorial scattering region (ESR), located within the circum-nuclear torus. Here we present NICMOS 2.0 micron imaging polarimetry of 6 polar scattered Seyfert 1 (S1) galaxies, in which the PSR dominates the optical polarization. The unresolved nucleus (<0.58 arcsec) is significantly polarized in only three objects, but 5 of the 6 exhibit polarization in a 0.58 to 1.5 arcsec circum-nuclear annulus. In Fairall 51 and ESO 323-G077, the polarization position angle at 2 microns (theta2m) is consistent with the average for the optical spectrum (thetav), implying that the nuclear polarization is dominated by polar scattering at both wavelengths. The same is probably true for NGC 3227. In both NGC 4593 and Mrk 766, there is a large difference between theta2m and thetav off nucleus, where polar scattering is expected to dominate. This may be due to contamination by interstellar polarization in NGC 4593, but there is no clear explanation in the case of the strongly polarized Mrk 766. Lastly, in Mrk 1239, a large change (~ 60deg) in theta2m between the nucleus and the annulus indicates that the unresolved nucleus and its immediate surroundings have different polarization states at 2 microns, which we attribute to the ESR and PSR, respectively. A further implication is that the source of the scattered 2 micron emission in the unresolved nucleus is the accretion disk, rather than torus hot dust emission.
We characterize for the first time the torus properties of an ultra-hard X-ray (14-195 keV) volume-limited (DL<40 Mpc) sample of 24 Seyfert (Sy) galaxies (BCS40 sample). The sample was selected from the Swift/BAT nine month catalog. We use high angul ar resolution nuclear infrared (IR) photometry and N-band spectroscopy, the CLUMPY torus models and a Bayesian tool to characterize the properties of the nuclear dust. In the case of the Sy1s we estimate the accretion disk contribution to the subarcsecond resolution nuclear IR SEDs (~0.4) which is, on average, 46+-28, 23+-13 and 11+-5% in the J-, H- and K-bands, respectively. This indicates that the accretion disk templates that assume a steep fall for longer wavelengths than 1 micron might underestimate its contribution to the near-IR emission. Using both optical (broad vs narrow lines) and X-ray (unabsorbed vs absorbed) classifications, we compare the global posterior distribution of the torus model parameters. We confirm that Sy2s have larger values of the torus covering factor (CT~0.95) than Sy1s (CT~0.65) in our volume-limited Seyfert sample. These findings are independent of whether we use an optical or X-ray classification. We find that the torus covering factor remains essentially constant within the errors in our luminosity range and there is no clear dependence with the Eddington ratio. Finally, we find tentative evidence that even an ultra hard X-ray selection is missing a significant fraction of highly absorbed type 2 sources with very high covering factor tori.
136 - A. Wolter 2004
An enigmatic, small class of IR and X-ray luminous sources, named ``Composite starburst/Seyfert galaxies, has been defined from IRAS and RASS data. The objects have optical spectra dominated by the features of HII galaxies (plus, in some cases, weak Seyfert signatures) but X-ray luminosities higher than expected from starbursts and more typical of Seyfert nuclei. The true nature of this class of objects is still unknown. We present Chandra data of four of these galaxies that were obtained to investigate the nature of the X-ray source. The X-ray spectrum, the lack of any significant extended component, and the observed variability indicate that the AGN is the dominant component in the X-ray domain.
Results obtained from an X-ray spectral survey of nearby Seyfert galaxies using XMM--Newton are reported. The sample was optically selected, well defined, complete in B mag, and distance limited: it consists of the nearest (D<22 Mpc) 27 Seyfert galax ies (9 of type 1, 18 of type 2) taken from the Ho et al. (1997) sample. This is one of the largest atlases of hard X-ray spectra of low-L active galaxies ever assembled. All nuclear sources except two Sey 2s are detected between 2-10 keV, half for the first time ever, and average spectra are obtained for all of them. Nuclear luminosities reach values down to 10**38 erg/s. The shape of the distribution of X-ray parameters is affected by the presence of Compton-thick objects (> 30% among type 2s). The latter have been identified either directly from their intense FeK line and flat X-ray spectra, or indirectly with flux diagnostic diagrams which use isotropic indicators. After taking into account these highly absorbed sources, we find that (i) the intrinsic X-ray spectral properties (i.e., spectral shapes and luminosities above 2 keV) are consistent between type 1 and type 2 Sey, as expected from ``unified models, (ii) Sey galaxies as a whole are distributed fairly continuously over the entire range of Nh, between 10**20 and 10**25 cm**-2, and (iii) while Sey 1s tend to have lower Nh and Sey 2s tend to have the highest, we find 30% and 10% exceptions, respectively. Overall the sample well represents the average intrinsic X-ray spectral properties of nearby AGN, including a proper estimate of the distribution of their absorbing columns. Finally, we conclude that, with the exception of a few cases, the present study agrees with predictions of unified models of Sey galaxies, and extends their validity down to very low luminosities.
98 - N. Chang , F. G. Xie , X. Liu 2021
Because the disc--jet coupling likely depends on various properties of sources probed, the sample control is always an important but challenging task. In this work, we re-analyzed the INTEGRAL hard X-ray-selected sample of Seyfert galaxies. We only c onsider sources that have measurements in black hole mass, and luminosities in radio and X-rays. Our sample includes 64 sources, consists of both bright AGNs and low-luminosity ones. We first find that, because of the similarity in the $L_{HX}/L_X$ distribution, the X-ray origin of radio-loud Seyferts may be the same to that of radio-quiet ones, where we attribute to the hot accretion flow (or similarly, the corona). We then investigate the connections between luminosities in radio and X-rays. Since our sample suffers a selection bias of a black hole mass $M_{BH}$ dependence on $L_X/L_{Edd}$, we focus on the correlation slope $xi_X$ between the radio (at 1.4 GHz) and X-ray luminosities in Eddington unit, i.e. $(L_R/L_{Edd})propto(L_X/L_{Edd})^{xi_X}$. We classify the sources according to various properties, i.e. 1) Seyfert classification, 2) radio loudness, and 3) radio morphology. We find that, despite these differences in classification, all the sources in our sample are consistent with a universal correlation slope $xi_X$, with $xi_X=0.77pm0.10$. This is unexpected, considering various possible radio emitters in radio-quiet systems. For the jet interpretation, our result may suggest a common/universal but to be identified jet launching mechanism among all the Seyfert galaxies, while properties like black hole spin and magnetic field strength only play secondary roles. We further estimate the jet production efficiency $eta_{jet}$ of Seyfert galaxies, which is $eta_{jet}approx1.9^{+0.9}_{-1.5}times10^{-4}$ on average. We also find that $eta_{jet}$ increases as the system goes fainter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا