ﻻ يوجد ملخص باللغة العربية
The diffuse interstellar bands (DIBs) probably arise from complex organic molecules whose strength in local galaxies correlates with neutral hydrogen column density, N(HI), and dust reddening, E(B-V). Since CaII absorbers in quasar (QSO) spectra are posited to have high N(HI) and significant E(B-V), they represent promising sites for the detection of DIBs at cosmological distances. Here we present the results from the first search for DIBs in 9 CaII-selected absorbers at 0.07 < z_abs < 0.55. We detect the 5780Ang DIB in one line of sight at z_abs = 0.1556; this is only the second QSO absorber in which a DIB has been detected. Unlike the majority of local DIB sight-lines, both QSO absorbers with detected DIBs show weak 6284Ang absorption compared with the 5780Ang band. This may be indicative of different physical conditions in intermediate redshift QSO absorbers compared with local galaxies. Assuming that local relations between the 5780Ang DIB strength and N(HI) and E(B-V) apply in QSO absorbers, DIB detections and limits can be used to derive N(HI) and E(B-V). For the one absorber in this study with a detected DIB, we derive E(B-V) = 0.23mag and log[N(HI)] >= 20.9, consistent with previous conclusions that CaII systems have high HI column densities and significant reddening. For the remaining 8 CaII-selected absorbers with 5780Ang DIB non-detections, we derive E(B-V) upper limits of 0.1-0.3mag.
We present the first sample of diffuse interstellar bands (DIBs) in the nearby galaxy M33. Studying DIBs in other galaxies allows the behaviour of the carriers to be examined under interstellar conditions which can be quite different from those of th
We present spectroscopic VLT/UVES observations of two emerging supernovae, the Type Ia SN 2001el and the Type II SN 2003hn, in the spiral galaxy NGC 1448. Our high resolution and high signal-to-noise spectra display atomic lines of Ca II, Na I, Ti II
Recently, the presence of fullerenes in the interstellar medium (ISM) has been confirmed especially with the first confirmed identification of two strong diffuse interstellar bands (DIBs) with C60+. This justifies reassesing the importance of interst
The identification of the carriers of the diffuse interstellar bands (DIBs) remains to be established, with the exception of five bands attributed to C60+, although it is generally agreed that DIB carriers should be large carbon-based molecules (with
We have used spectra of hot stars from the RAVE Survey in order to investigate the visibility and properties of five diffuse interstellar bands previously reported in the literature. The RAVE spectroscopic survey for Galactic structure and kinematics