ﻻ يوجد ملخص باللغة العربية
We present first results for a study with two mass-degenerate dynamical Chirally Improved (CI) fermions on lattices of spatial extent 2.4 fm. The CI Dirac operator obeys the Ginsparg-Wilson condition in good approximation. The pion mass we use is still large O(470 MeV) for the 16**3*32 lattices with lattice spacing of 0.15 fm. The hadron masses are obtained with the variational technique and the results compared with earlier quenched calculations with similar lattice parameters. We find indications for the isovector, scalar meson a0(980) near the experimental value, in contradistinction to quenched results which always produced a mass value compatible with the first excitation a0(1450).
We present recent results of our dynamical simulations with Chirally Improved fermions and report on new developments in the determination of excited light-quark meson states using interpolators constructed by applying covariant derivatives on Jacobi
We simulate two dynamical, mass degenerate light quarks on 16^3x32 lattices with a spatial extent of 2.4 fm using the Chirally Improved Dirac operator. The simulation method, the implementation of the action and signals of equilibration are discussed
We present results for the spectrum of light and strange mesons on configurations with two flavors of mass-degenerate Chirally Improved sea quarks. The calculations are performed on seven ensembles of lattice size 16^3x32 at three different gauge cou
We present first results from dynamical Chirally Improved (CI) fermion simulations for the axial charge $G_A$ of various hadrons. We work with 16^3x32 lattices of spatial extent 2.4 fm and use the variational method with a suitable basis of Jacobi-sm
We present our latest results for the excitations of static-light mesons on both quenched and unquenched lattices, where the light quarks are simulated using the chirally improved (CI) lattice Dirac operator.