ترغب بنشر مسار تعليمي؟ اضغط هنا

A multifrequency study of giant radio sources I. Low-frequency Giant Metrewave Radio Telescope observations of selected sources

169   0   0.0 ( 0 )
 نشر من قبل D. J. Saikia
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. Konar




اسأل ChatGPT حول البحث

We present low-frequency observations with the Giant Metrewave Radio Telescope (GMRT) of a sample of giant radio sources (GRSs), and high-frequency observations of three of these sources with the Very Large Array (VLA). From multifrequency observations of the lobes we estimate the magnetic field strengths using three different approaches, and show that these differ at most by a factor of $sim$3. For these large radio sources the inverse-Compton losses usually dominate over synchrotron losses when estimates of the classical minimum energy magnetic field are used, consistent with earlier studies. However, this is often not true if the magnetic fields are close to the values estimated using the formalism of Beck & Krause. We also examine the spectral indices of the cores and any evidence of recurrent activity in these sources. We probe the environment using the symmetry parameters of these sources and suggest that their environments are often asymmetric on scales of $sim$1 Mpc, consistent with earlier studies.



قيم البحث

اقرأ أيضاً

118 - M. Jamrozy 2007
Multifrequency observations with the GMRT and the VLA are used to determine the spectral breaks in consecutive strips along the lobes of a sample of selected giant radio sources (GRSs) in order to estimate their spectral ages. The maximum spectral ag es estimated for the detected radio emission in the lobes of our sources range from $sim$6 to 36 Myr with a median value of $sim$20 Myr using the classical equipartition fields. Using the magnetic field estimates from the Beck & Krause formalism the spectral ages range from $sim$5 to 38 Myr with a median value of $sim$22 Myr. These ages are significantly older than smaller sources. In all but one source (J1313+6937) the spectral age gradually increases with distance from the hotspot regions, confirming that acceleration of the particles mainly occurs in the hotspots. Most of the GRSs do not exhibit zero spectral ages in the hotspots, as is the case in earlier studies of smaller sources. This is likely to be largely due to contamination by more extended emission due to relatively modest resolutions. The injection spectral indices range from $sim$0.55 to 0.88 with a median value of $sim$0.6. We discuss these values in the light of theoretical expectations, and show that the injection spectral index appears to be correlated with luminosity and/or redshift as well as with linear size.
We present results from a study of seven large known head-tail radio galaxies based on observations using the Giant Metrewave Radio Telescope at 240 and 610 MHz. These observations are used to study the radio morphologies and distribution of the spec tral indices across the sources. The overall morphology of the radio tails of these sources is suggestive of random motions of the optical host around the cluster potential. The presence of the multiple bends an d wiggles in several head-tail sources is possibly due to the precessing radio jets. We find steepening of the spectral index along the radio tails. The prevailing equipartition magnetic field also decreases a long the radio tails of these sources. These steepening trends are attributed to the synchrotron aging of plasma toward the ends of the tails. The dynamical ages of these sample sources have been estimated to be ~100 Myr, which is a factor of six more than the age estimates from the radiative losses due to synchrotron cooling.
The dynamical ages of the opposite lobes of selected giant radio sources are estimated using the DYNAGE algorithm of Machalski et al., and compared with their spectral ages estimated and studied by Jamrozy et al. in Paper II. As expected, the DYNAGE fits give slightly different dynamical ages and other models parameters for the opposite lobes modelled independently each other, e.g. the age ratios are found between ~1.1 to ~1.4. Demanding similar values of the jet power and the radio core density for the same source, we look for a self-consistent solution for the opposite lobes, which results in different density profiles along them found by the fit. We also show that a departure from the equipartition conditions assumed in the model, justified by X-ray observations of the lobes of some nearby radio galaxies, and a relevant variation of the magnetic-field strengths may provide an equalisation of the lobes ages. A comparison of the dynamical and spectral ages shows that a ratio of the dynamical age to the spectral age of the lobes of investigated giant radio galaxies is between ~1 and ~5, i.e. is similar to that found for smaller radio galaxies (e.g. Parma et al. 1999). Supplementing possible causes for this effect already discussed in the literature, like uncertainty of assumed parameters of the model, an influence of a possible departure from the energy equipartition assumption, etc. Arguments are given to suggest that DYNAGE can better take account of radiative effects at lower frequencies than the spectral-ageing analysis.The DYNAGE algorithm is especially effective for sources at high redshifts, for which an intrinsic spectral curvature is shifted to low frequencies.
We present new Giant Metrewave Radio Telescope observations at 235 MHz and 610 MHz of 18 X-ray bright galaxy groups. These observations are part of an extended project, presented here and in future papers, which combines low-frequency radio and X-ray data to investigate the interaction between central active galactic nuclei (AGN) and the intra-group medium (IGM). The radio images show a very diverse population of group-central radio sources, varying widely in size, power, morphology and spectral index. Comparison of the radio images with Chandra and XMM-Newton X-ray images shows that groups with significant substructure in the X-ray band and marginal radio emission at >= 1 GHz host low-frequency radio structures that correlate with substructures in IGM. Radio-filled X-ray cavities, the most evident form of AGN/IGM interaction in our sample, are found in half of the systems, and are typically associated with small, low- or mid-power double radio sources. Two systems, NGC5044 and NGC4636, possess multiple cavities, which are isotropically distributed around the group center, possibly due to group weather. In other systems the radio/X-ray correlations are less evident. However, the AGN/IGM interaction can manifest itself through the effects of the high-pressure medium on the morphology, spectral properties and evolution of the radio-emitting plasma. In particular, the IGM can confine fading radio lobes in old/dying radio galaxies and prevent them from dissipating quickly. Evidence for radio emission produced by former outbursts that coexist with current activity is found in six groups of the sample.
The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project has the primary goal of detecting and characterizing low-frequency gravitational waves through high-precision pulsar timing. The mitigation of interstellar effects is crucial to achieve the necessary precision for gravitational wave detection. Effects like dispersion and scattering are more influential at lower observing frequencies, with the variation of these quantities over week-month timescales requiring high-cadence multi-frequency observations for pulsar timing projects. In this work, we utilize the dual-frequency observing capability of the Giant Metrewave Radio Telescope (GMRT) and evaluate the potential decrease in dispersion measure (DM) uncertainties when combined with existing pulsar timing array data. We present the timing analysis for four millisecond pulsars observed with the GMRT simultaneously at 322 and 607 MHz, and compare the DM measurements with those obtained through NANOGrav observations with the Green Bank Telescope (GBT) and Arecibo Observatory at 1400 to 2300 MHz frequencies. Measured DM values with the GMRT and NANOGrav program show significant offsets for some pulsars, which could be caused by pulse profile evolution in the two frequency bands. In comparison to the predicted DM uncertainties when incorporating these low-frequency data into the NANOGrav dataset, we find that higher-precision GMRT data is necessary to provide improved DM measurements. Through the detection and analysis of pulse profile baseline ripple in data on test pulsar B1929+10, we find that, while not important for this data, it may be relevant for other timing datasets. We discuss the possible advantages and challenges of incorporating GMRT data into NANOGrav and International Pulsar Timing Array datasets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا