ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-orbital Systems with Crystal Field Splitting and Interorbital Hopping

155   0   0.0 ( 0 )
 نشر من قبل Yun Song
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nondegenerate two-orbital Hubbard model is studied within the dynamic mean-field theory to reveal the influence of two important factors, i.e. crystal field splitting and interorbital hopping, on orbital selective Mott transition (OSMT) and realistic compound Ca$_{2-x}$Sr$_{x}$RuO$_{4}$. A distinctive feature of the optical conductivity of the two nondegenerate bands is found in OSMT phase, where the metallic character of the wide band is indicated by a nonzero Drude peak, while the insulating narrow band has its Drude peak drop to zero in the mean time. We also find that the OSMT regime expands profoundly with the increase of interorbital hopping integrals. On the contrary, it is shown that large and negative level splitting of the two orbitals diminishes the OSMT regime completely. Applying the present findings to compound Ca$_{2-x}$Sr$_{x}$RuO$_{4}$, we demonstrate that in the doping region from $x=0.2$ to 2.0, the negative level splitting is unfavorable to the OSMT phase.



قيم البحث

اقرأ أيضاً

We investigate the effects of crystal field splitting in a doped two-band Hubbard model with different bandwidths within dynamical mean-field theory (DMFT), using a quantum Monte Carlo impurity solver. In addition to an orbital-selective Mott phase ( OSMP) of the narrow band, which is adiabatically connected with the well-studied OSMP in the half-filled case without crystal field splitting, we find, for sufficiently strong interaction and a suitable crystal field, also an OSMP of the wide band. We establish the phase diagram (in the absence of magnetic or orbital order) at moderate doping as a function of interaction strength and crystal field splitting and show that also the wide-band OSMP is associated with non-Fermi-liquid behavior in the case of Ising type Hund rule couplings. Our numerical results are supplemented by analytical strong-coupling studies of spin order and spectral functions at integer filling.
We present a study of the paramagnetic metallic and insulating phases of vanadium sesquioxide by means of the $N$th order muffin-tin orbital implementation of density functional theory combined with dynamical mean-field theory. The transition is show n to be driven by a correlation-induced enhancement of the crystal field splitting within the $t_{2g}$ manifold, which results in a suppression of the hybridization between the $a_{1g}$ and $e_g^{pi}$ bands. We discuss the changes in the effective quasi-particle band structure caused by the correlations and the corresponding self-energies. At temperatures of about 400 K we find the $a_{1g}$ orbitals to display coherent quasi-particle behavior, while a large imaginary part of the self-energy and broad features in the spectral function indicate that the $e_g^{pi}$ orbitals are still far above their coherence temperature. The local spectral functions are in excellent agreement with recent bulk sensitive photoemission data. Finally, we also make a prediction for angle-resolved photoemission experiments by calculating momentum-resolved spectral functions.
The origin of successive phase transitions observed in the layered perovskite $alpha$-Sr$_2$CrO$_4$ is studied by the density-functional-theory-based electronic structure calculation and mean-field analysis of the proposed low-energy effective model. We find that, despite the fact that the CrO$_6$ octahedron is elongated along the $c$-axis of the crystal structure, the crystal-field level of nondegenerate $3d_{xy}$ orbitals of the Cr ion is lower in energy than that of doubly degenerate $3d_{yz}$ and $3d_{xz}$ orbitals, giving rise to the orbital degrees of freedom in the system with a $3d^2$ electron configuration. We show that the higher (lower) temperature phase transition is caused by the ordering of the orbital (spin) degrees of freedom.
Quantum magnets with spin $J=2$, which arise in spin-orbit coupled Mott insulators, can potentially display multipolar orders. We carry out an exact diagonalization study of a simple octahedral crystal field Hamiltonian for two electrons, incorporati ng spin-orbit coupling (SOC) and interactions, finding that either explicitly including the $e_g$ orbitals, or going beyond the rotationally invariant Coulomb interaction within the $t_{2g}$ sector, causes a degeneracy breaking of the $J!=!2$ level degeneracy. This can lead to a low-lying non-Kramers doublet carrying quadrupolar and octupolar moments and an excited triplet which supports magnetic dipole moments, bolstering our previous phenomenological proposal for the stabilization of ferro-octupolar order in heavy transition metal oxides. We show that the spontaneous time-reversal symmetry breaking due to ferro-octupolar ordering within the non-Kramers doublet leads to electronic orbital loop currents. The resulting internal magnetic fields can potentially explain the small fields inferred from muon-spin relaxation ($mu$SR) experiments on cubic $5d^2$ osmate double perovskites Ba$_2$ZnOsO$_6$, Ba$_2$CaOsO$_6$, and Ba$_2$MgOsO$_6$, which were previously attributed to weak dipolar magnetism. We make further predictions for oxygen NMR experiments on these materials. We also study the reversed level scheme, where the $J!=!2$ multiplet splits into a low-lying magnetic triplet and excited non-Kramers doublet, presenting single-ion results for the magnetic susceptibility in this case, and pointing out its possible relevance for the rhenate Ba$_2$YReO$_6$. Our work highlights the intimate connection between the physics of heavy transition metal oxides and that of $f$-electron based heavy fermion compounds.
We investigate a quarter-filled two-band Hubbard model involving a crystal-field splitting, which lifts the orbital degeneracy as well as an inter-orbital hopping (inter-band hybridization). Both terms are relevant to the realistic description of cor related materials such as transition-metal oxides. The nature of the Mott metal-insulator transition is clarified and is found to depend on the magnitude of the crystal-field splitting. At large values of the splitting, a transition from a two-band to a one-band metal is first found as the on-site repulsion is increased and is followed by a Mott transition for the remaining band, which follows the single-band (Brinkman-Rice) scenario well documented previously within dynamical mean-field theory. At small values of the crystal-field splitting, a direct transition from a two-band metal to a Mott insulator with partial orbital polarization is found, which takes place simultaneously for both orbitals. This transition is characterized by a vanishing of the quasiparticle weight for the majority orbital but has a first-order character for the minority orbital. It is pointed out that finite-temperature effects may easily turn the metallic regime into a bad metal close to the orbital polarization transition in the metallic phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا