ﻻ يوجد ملخص باللغة العربية
Much attention has been given to a possible violation of the optical sum rule in the cuprates, and the connection this might have to kinetic energy lowering. The optical integral is composed of a cut-off independent term (whose temperature dependence is a measure of the sum rule violation), plus a cut-off dependent term that accounts for the extension of the Drude peak beyond the upper bound of the integral. We find that the temperature dependence of the optical integral in the normal state of the cuprates can be accounted for solely by the latter term, implying that the dominant contribution to the observed sum rule `violation in the normal state is due to the finite cut-off. This cut-off dependent term is well modeled by a theory of electrons interacting with a broad spectrum of bosons.
We report on the quasi-linear in field intrachain magnetoresistance in the normal state of a quasi-one-dimensional superconductor Ta$_4$Pd$_3$Te$_{16}$ ($T_c$$sim$4.6 K). Both the longitudinal and transverse in-chain magnetoresistance shows a power-l
We demonstrate that most features ascribed to strong correlation effects in various spectroscopies of the cuprates are captured by a calculation of the self-energy incorporating effects of spin and charge fluctuations. The self energy is calculated o
Here, we present the comparative study of magnetotransport properties of recently discovered Ta2PdTe6 and Nb2PdS5 superconductors. The XRD and magnetotransport measurements are performed on these samples to investigate structure and superconducting p
We discuss the magnetic excitations of well-ordered stripe and checkerboard phases, including the high energy magnetic excitations of recent interest and possible connections to the resonance peak in cuprate superconductors. Using a suitably parametr
The ground-state properties of CuFeAs were investigated by applying density functional theory calculations within generalized gradient approximation (GGA) and GGA+U. We find that the bicollinear antiferromagnetic state with antiparallel orbital magne