ﻻ يوجد ملخص باللغة العربية
(Abridged) Aims: In this paper, we seek to establish the suitability of imaging spectroscopy performed in the Ca II 854.2 nm line as a means to investigate the solar chromosphere at high resolution. Methods: We utilize monochromatic images obtained with the Interferometric BIdimensional Spectrometer (IBIS) at multiple wavelengths within the Ca II 854.2 nm line and over several quiet areas. We analyze both the morphological properties derived from narrow-band monochromatic images and the average spectral properties of distinct solar features such as network points, internetwork areas and fibrils. Results: The spectral properties derived over quiet-Sun targets are in full agreement with earlier results obtained with fixed-slit spectrographic observations, highlighting the reliability of the spectral information obtained with IBIS. Furthermore, the very narrowband IBIS imaging reveals with much clarity the dual nature of the Ca II 854.2 nm line: its outer wings gradually sample the solar photosphere, while the core is a purely chromospheric indicator. The latter displays a wealth of fine structures including bright points, akin to the Ca II H2V and K2V grains, as well as fibrils originating from even the smallest magnetic elements. The fibrils occupy a large fraction of the observed field of view even in the quiet regions, and clearly outline atmospheric volumes with different dynamical properties, strongly dependent on the local magnetic topology. This highlights the fact that 1-D models stratified along the vertical direction can provide only a very limited representation of the actual chromospheric physics.
Filtergrams obtained in Ca II H, Ca II K and H-alpha are often employed as diagnostics of the solar chromosphere. However, the vastly disparate appearance between the typical filtergrams in these different lines calls into question the nature of what
The structure and energy balance of the solar chromosphere remain poorly known. We have used the imaging spectrometer IBIS at the Dunn Solar Telescope to obtain fast-cadence, multi-wavelength profile sampling of Halpha and Ca II 854.2 nm over a sizab
(Abridged) Aims: We characterize the dynamics of the quiet inter-network chromosphere by studying the occurrence of acoustic shocks and their relation with the concomitant photospheric structure and dynamics. Methods: We analyze a comprehensive d
We present observational constraints on the solar chromospheric heating contribution from acoustic waves with frequencies between 5 and 50 mHz. We utilize observations from the Dunn Solar Telescope in New Mexico complemented with observations from th
As a part of the long-term program at Kitt Peak National Observatory (KPNO), the Mn I 539.4 nm line has been observed for nearly three solar cycles using the McMath telescope and the 13.5 m spectrograph in double-pass mode. These full-disk spectropho