ﻻ يوجد ملخص باللغة العربية
We consider estimating a random vector from its noisy projections onto low dimensional subspaces constituting a fusion frame. A fusion frame is a collection of subspaces, for which the sum of the projection operators onto the subspaces is bounded below and above by constant multiples of the identity operator. We first determine the minimum mean-squared error (MSE) in linearly estimating the random vector of interest from its fusion frame projections, in the presence of white noise. We show that MSE assumes its minimum value when the fusion frame is tight. We then analyze the robustness of the constructed linear minimum MSE (LMMSE) estimator to erasures of the fusion frame subspaces. We prove that tight fusion frames consisting of equi-dimensional subspaces have maximum robustness (in the MSE sense) with respect to erasures of one subspace, and that the optimal subspace dimension depends on signal-to-noise ratio (SNR). We also prove that tight fusion frames consisting of equi-dimensional subspaces with equal pairwise chordal distances are most robust with respect to two and more subspace erasures. We call such fusion frames equi-distance tight fusion frames, and prove that the chordal distance between subspaces in such fusion frames meets the so-called simplex bound, and thereby establish connections between equi-distance tight fusion frames and optimal Grassmannian packings. Finally, we present several examples for construction of equi-distance tight fusion frames.
Configurations of subspaces like equichordal and equiisoclinic tight fusion frames, which are in some sense optimally spread apart and which also have reconstruction properties emulating those of orthonormal bases, are useful in various applications,
Fusion frame theory is an emerging mathematical theory that provides a natural framework for performing hierarchical data processing. A fusion frame is a frame-like collection of subspaces in a Hilbert space, thereby generalizing the concept of a fra
In 2012 Gu{a}vruc{t}a introduced the notions of $K$-frame and of atomic system for a linear bounded operator $K$ in a Hilbert space $mathcal{H}$, in order to decompose its range $mathcal{R}(K)$ with a frame-like expansion. In this article we revisit
We introduce the concept of weak-localization for generalized frames and use this concept to define a class of weakly localized operators. This class contains many important operators, including: Short Time Fourier Transform multipliers, Calderon-Toe
In this paper we characterize and construct novel oversampled filter banks implementing fusion frames. A fusion frame is a sequence of orthogonal projection operators whose sum can be inverted in a numerically stable way. When properly designed, fusi