ترغب بنشر مسار تعليمي؟ اضغط هنا

The XMM large scale structure survey: optical vs. X-ray classifications of active galactic nuclei and the unified scheme

150   0   0.0 ( 0 )
 نشر من قبل Olivier Garcet
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Our goal is to characterize AGN populations by comparing their X-ray and optical classifications. We present a sample of 99 spectroscopically identified X-ray point sources in the XMM-LSS survey which are significantly detected in the [2-10] keV band, and with more than 80 counts. We performed an X-ray spectral analysis for all of these 99 X-ray sources. Introducing the fourfold point correlation coefficient, we find only a mild correlation between the X-ray and the optical classifications, as up to 30% of the sources have differing X-ray and optical classifications: on one hand, 10% of the type 1 sources present broad emission lines in their optical spectra and strong absorption in the X-rays. These objects are highly luminous AGN lying at high redshift and thus dilution effects are totally ruled out, their discrepant nature being an intrinsic property. Their X-ray luminosities and redshifts distributions are consistent with those of the unabsorbed X-ray sources with broad emission lines. On the other hand, 25/32 are moderate luminosity AGN, which are both unabsorbed in the X-rays and only present narrow emission lines in their optical spectra. The majority of them have an optical spectrum which is representative of the host galaxy. We finally infer that dilution of the AGN by the host galaxy seems to account for their nature. 5/25 have been defined as Seyfert 2. In conclusion, most of these 32 discrepant cases can be accounted for by the standard AGN unified scheme, as its predictions are not met for only 12% of the 99 X-ray sources. ABRIDGED



قيم البحث

اقرأ أيضاً

(Abridged) Many classes of active galactic nuclei (AGN) have been defined entirely throughout optical wavelengths while the X-ray spectra have been very useful to investigate their inner regions. However, optical and X-ray results show many discrepan cies that have not been fully understood yet. The aim of this paper is to study the synapses between the X-ray and optical classifications. For the first time, the new EFLUXER task allowed us to analyse broad band X-ray spectra of emission line nuclei (ELN) without any prior spectral fitting using artificial neural networks (ANNs). Our sample comprises 162 XMM-Newton/pn spectra of 90 local ELN in the Palomar sample. It includes starbursts (SB), transition objects (T2), LINERs (L1.8 and L2), and Seyferts (S1, S1.8, and S2). The ANNs are 90% efficient at classifying the trained classes S1, S1.8, and SB. The S1 and S1.8 classes show a wide range of S1- and S1.8-like components. We suggest that this is related to a large degree of obscuration at X-rays. The S1, S1.8, S2, L1.8, L2/T2/SB-AGN (SB with indications of AGN), and SB classes have similar average X-ray spectra within each class, but these average spectra can be distinguished from class to class. The S2 (L1.8) class is linked to the S1.8 (S1) class with larger SB-like component than the S1.8 (S1) class. The L2, T2, and SB-AGN classes conform a class in the X-rays similar to the S2 class albeit with larger fractions of SB-like component. This SB-like component is the contribution of the star-formation in the host galaxy, which is large when the AGN is weak. An AGN-like component seems to be present in the vast majority of the ELN, attending to the non-negligible fraction of S1-like or S1.8-like component. This trained ANN could be used to infer optical properties from X-ray spectra in surveys like eRosita.
We present the X-ray pipeline developed for the purpose of the cluster search in the XMM-LSS survey. It is based on a two-stage procedure via a dedicated handling of the Poisson nature of the signal: (1) source detection on multi-resolution wavelet f iltered images; (2) source analysis by means of a maximum likelihood fit to the photon images. The source detection efficiency and characterisation are studied through extensive Monte-Carlo simulations. This led us to define two samples of extended sources: the C1 class that is uncontaminated, and the less restrictive C2 class that allows for 50% contamination. The resulting predicted selection function is presented and the comparison to the current XMM-LSS confirmed cluster sample shows very good agreement. We arrive at average predicted source densities of about 7 C1 and 12 C2 per deg2, which is higher than any available wide field X-ray survey. We finally notice a substantial deviation of the predicted redshift distribution for our samples from the one obtained using the usual assumption of a flux limited sample.
Bolometric luminosities and Eddington ratios of both X-ray selected broad-line (Type-1) and narrow-line (Type-2) AGN from the XMM-Newton survey in the COSMOS field are presented. The sample is composed by 929 AGN (382 Type-1 AGN and 547 Type-2 AGN) a nd it covers a wide range of redshifts, X-ray luminosities and absorbing column densities. About 65% of the sources are spectroscopically identified as either Type-1 or Type-2 AGN (83% and 52% respectively), while accurate photometric redshifts are available for the rest of the sample. The study of such a large sample of X-ray selected AGN with a high quality multi-wavelength coverage from the far-infrared (now with the inclusion of Herschel data at 100 micron and 160 micron) to the optical-UV allows us to obtain accurate estimates of bolometric luminosities, bolometric corrections and Eddington ratios. The kbol-Lbol relations derived in the present work are calibrated for the first time against a sizable AGN sample, and rely on observed redshifts, X-ray luminosities and column density distributions. We find that kbol is significantly lower at high Lbol with respect to previous estimates by Marconi et al. (2004) and Hopkins et al. (2007). Black hole masses and Eddington ratios are available for 170 Type-1 AGN, while black hole masses for Type-2 AGN are computed for 481 objects using the black hole mass-stellar mass relation and the morphological information. We confirm a trend between kbol and lambda_Edd, with lower hard X-ray bolometric corrections at lower Eddington ratios for both Type-1 and Type-2 AGN. We find that, on average, Eddington ratio increases with redshift for all Types of AGN at any given Mbh, while no clear evolution with redshift is seen at any given Lbol.
127 - V. Mainieri 2006
We present a detailed spectral analysis of point-like X-ray sources in the XMM-COSMOS field. Our sample of 135 sources only includes those that have more than 100 net counts in the 0.3-10 keV energy band and have been identified through optical spect roscopy. The majority of the sources are well described by a simple power-law model with either no absorption (76%) or a significant intrinsic, absorbing column (20%).As expected, the distribution of intrinsic absorbing column densities is markedly different between AGN with or without broad optical emission lines. We find within our sample four Type-2 QSOs candidates (L_X > 10^44 erg/s, N_H > 10^22 cm^-2), with a spectral energy distribution well reproduced by a composite Seyfert-2 spectrum, that demonstrates the strength of the wide field XMM/COSMOS survey to detect these rare and underrepresented sources.
In the context of the upcoming SRG/eROSITA survey, we present an N-body simulation-based mock catalogue for X-ray selected AGN samples. The model reproduces the observed hard X-ray AGN luminosity function (XLF) and the soft X-ray logN-logS from redsh ift 0 to 6. The XLF is reproduced to within $pm5%$ and the logN-logS to within $pm20%$. We develop a joint X-ray -- optical extinction and classification model. We adopt a set of empirical spectral energy distributions to predict observed magnitudes in the UV, optical and NIR. With the latest eROSITA all sky survey sensitivity model, we create a high-fidelity full-sky mock catalogue of X-ray AGN. It predicts their distributions in right ascension, declination, redshift and fluxes. Using empirical medium resolution optical spectral templates and an exposure time calculator, we find that $1.1times10^6$ ($4times10^5$) fiber-hours are needed to follow-up spectroscopically from the ground the detected X-ray AGN with an optical magnitude $21<r<22.8$ ($22.8<r<25$) with a 4-m (8-m) class multi-object spectroscopic facility. We find that future clustering studies will measure the AGN bias to the percent level at redshift $z<1.2$ and should discriminate possible scenarios of galaxy-AGN co-evolution. We predict the accuracy to which the baryon acoustic oscillation standard ruler will be measured using X-ray AGN: better than 3% for AGN between redshift 0.5 to 3 and better than 1% using the Ly$alpha$ forest of X-ray QSOs discovered between redshift 2 and 3. eROSITA will provide an outstanding set of targets for future galaxy evolution and cosmological studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا