ﻻ يوجد ملخص باللغة العربية
We report on results of our theoretical study of the in-plane infrared conductivity of the high-Tc cuprate superconductors using the model where charged planar quasiparticles are coupled to spin fluctuations. The computations include both the renormalization of the quasiparticles and the corresponding modification of the current-current vertex function (vertex correction), which ensures gauge invariance of the theory and local charge conservation in the system. The incorporation of the vertex corrections leads to an increase of the total intraband optical spectral weight (SW) at finite frequencies, a SW transfer from far infrared to mid infrared, a significant reduction of the SW of the superconducting condensate, and an amplification of characteristic features in the superconducting state spectra of the inverse scattering rate 1/tau. We also discuss the role of selfconsistency and propose a new interpretation of a kink occurring in the experimental low temperature spectra of 1/tau around 1000cm^{-1}.
We report a genuine phase diagram for a disorder-free CuO_2 plane based on the precise evaluation of the local hole density (N_h) by site-selective Cu-NMR studies on five-layered high-Tc cuprates. It has been unraveled that (1) the antiferromagnetic
We report on results of our theoretical study of the c-axis infrared conductivity of bilayer high-Tc cuprate superconductors using a microscopic model involving the bilayer-split (bonding and antibonding) bands. An emphasis is on the gauge-invariance
We report the results of a muon spin rotation (muSR) study of the bulk of Bi{2+x}Sr{2-x}CaCu2O{8+delta}, as well as pure and Ca-doped YBa2Cu3Oy, which together with prior measurements reveal a universal inhomogeneous magnetic-field response of hole-d
Developing a theory of high-temperature superconductivity in copper oxides is one of the outstanding problems in physics. Twenty-five years after its discovery, no consensus on the microscopic theory has been reached despite tremendous theoretical an
One of the most essential aspects of cuprate superconductors is a large pseudogap coexisting with a superconducting gap, then some anomalous properties can be understood in terms of the formation of the pseudogap. Within the kinetic energy driven sup