ﻻ يوجد ملخص باللغة العربية
The exclusive electroproduction process $vec{e}p to e^prime n pi^+$ was measured in the range of the photon virtuality $Q^2 = 1.7 - 4.5 rm{GeV^2}$, and the invariant mass range for the $npi^+$ system of $W = 1.15 - 1.7 rm{GeV}$ using the CEBAF Large Acceptance Spectrometer. For the first time, these kinematics are probed in exclusive $pi^+$ production from protons with nearly full coverage in the azimuthal and polar angles of the $npi^+$ center-of-mass system. The $npi^+$ channel has particular sensitivity to the isospin 1/2 excited nucleon states, and together with the $ppi^0$ final state will serve to determine the transition form factors of a large number of resonances. The largest discrepancy between these results and present modes was seen in the $sigma_{LT}$ structure function. In this experiment, 31,295 cross section and 4,184 asymmetry data points were measured. Because of the large volume of data, only a reduced set of structure functions and Legendre polynomial moments can be presented that are obtained in model-independent fits to the differential cross sections.
Beam-target double-spin asymmetries and target single-spin asymmetries were measured for the exclusive $pi^0$ electroproduction reaction $gamma^* p to p pi^0$, expanding an analysis of the $gamma^* p to n pi^+$ reaction from the same experiment. The
Beam-target double-spin asymmetries and target single-spin asymmetries were measured for the exclusive $pi^+$ electroproduction reaction $gamma^* p to n pi^+$. The results were obtained from scattering of 6 GeV longitudinally polarized electrons off
New results on the single-differential and fully-integrated cross sections for the process $gamma_{v} p rightarrow p pi^{+} pi^{-}$ are presented. The experimental data were collected with the CLAS detector at Jefferson Laboratory. Measurements were
The photon-ion merged-beams technique has been employed at the new Photon-Ion spectrometer at PETRA III (PIPE) for measuring multiple photoionization of Xe$^{q+}$ (q=1-5) ions. Total ionization cross sections have been obtained on an absolute scale f
Differential cross sections for the reaction $gamma p to K^{*0} Sigma^+$ are presented at nine bins in photon energy in the range from 1.7 to 3.0 GeV. The kstar was detected by its decay products, $K^+pi^-$, in the CLAS detector at Jefferson Lab. The