ﻻ يوجد ملخص باللغة العربية
This paper continues the study of the lower central series quotients of an associative algebra A, regarded as a Lie algebra, which was started in math/0610410 by Feigin and Shoikhet. Namely, it provides a basis for the second quotient in the case when A is the free algebra in n generators (note that the Hilbert series of this quotient was determined earlier in math/0610410). Further, it uses this basis to determine the structure of the second quotient in the case when A is the free algebra modulo the relations saying that the generators have given nilpotency orders. Finally, it determines the structure of the third and fourth quotient in the case of 2 generators, confirming an answer conjectured in math/0610410. Finally, in the appendix, the results of math/0610410 are generalized to the case when A is an arbitrary associative algebra (under certain conditions on $A$).
Given a symmetric operad $mathcal{P}$ and a $mathcal{P}$-algebra $V$, the associative universal enveloping algebra ${mathsf{U}_{mathcal{P}}}$ is an associative algebra whose category of modules is isomorphic to the abelian category of $V$-modules. We
Every irreducible finite-dimensional representation of the quantized enveloping algebra U_q(gl_n) can be extended to the corresponding quantum affine algebra via the evaluation homomorphism. We give in explicit form the necessary and sufficient condi
We study monoidal categorifications of certain monoidal subcategories $mathcal{C}_J$ of finite-dimensional modules over quantum affine algebras, whose cluster algebra structures coincide and arise from the category of finite-dimensional modules over
In this paper the W-algebra W(2,2) and its representation theory are studied. It is proved that a simple vertex operator algebra generated by two weight 2 vectors is either a vertex operator algebra associated to a highest irreducible W(2,2)-module o
We propose a quantum analogue of a Tits-Kantor-Koecher algebra with a Jordan torus as an coordinated algebra by looking at the vertex operator construction over a Fock space.