ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimised Curing of Silver Ink Jet Based Printed Traces

123   0   0.0 ( 0 )
 نشر من قبل Francoise Heres-Renzetti
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Manufacturing electronic devices by printing techniques with low temperature sintering of nano-size material particles can revolutionize the electronics industry in coming years. The impact of this change to the industry can be significant enabling low-cost products and flexibility in manufacturing. implementation of a new production technology with new materials requires thorough elementary knowledge creation. It should be noticed that although some of first electronic devices ideally can be manufactured by printing, at the present several modules are in fact manufactured by using hybrid techniques (for instance photolithography, vapor depositions, spraying, etc...).



قيم البحث

اقرأ أيضاً

Fully exploiting the properties of 2D crystals requires a mass production method able to produce heterostructures of arbitrary complexity on any substrate, including plastic. Solution processing of graphene allows simple and low-cost techniques such as inkjet printing to be used for device fabrication. However, available inkjet printable formulations are still far from ideal as they are either based on toxic solvents, have low concentration, or require time-consuming and expensive formulation processing. In addition, none of those formulations are suitable for thin-film heterostructure fabrication due to the re-mixing of different 2D crystals, giving rise to uncontrolled interfaces, which results in poor device performance and lack of reproducibility. In this work we show a general formulation engineering approach to achieve highly concentrated, and inkjet printable water-based 2D crystal formulations, which also provides optimal film formation for multi-stack fabrication. We show examples of all-inkjet printed heterostructures, such as large area arrays of photosensors on plastic and paper and programmable logic memory devices, fully exploiting the design flexibility of inkjet printing. Finally, dose-escalation cytotoxicity assays in vitro also confirm the inks biocompatible character, revealing the possibility of extending use of such 2D crystal formulations to drug delivery and biomedical applications.
Previous efforts to directly write conductive metals have been narrowly focused on nanoparticle ink suspensions that require aggressive sintering (>200 {deg}C) and result in low-density, small-grained agglomerates with electrical conductivities <25% of bulk metal. Here, we demonstrate aerosol jet printing of a reactive ink solution and characterize high-density (93%) printed silver traces having near-bulk conductivity and grain sizes greater than the electron mean free path, while only requiring a low-temperature (80 {deg}C) treatment. We have developed a predictive electronic transport model which correlates the microstructure to the measured conductivity and identifies a strategy to approach the practical conductivity limit for printed metals. Our analysis of how grain boundaries and tortuosity contribute to electrical resistivity provides insight into the basic materials science that governs how an ink formulator or process developer might approach improving the conductivity. Transmission line measurements validate that electrical properties are preserved up to 20 GHz, which demonstrates the utility of this technique for printed RF components. This work reveals a new method of producing robust printed electronics that retain the advantages of rapid prototyping and three-dimensional fabrication while achieving the performance necessary for success within the aerospace and communications industries.
We report the fabrication of a low cost, and highly reproducible large scale surface-enhanced Raman spectroscopy substrate using an inkjet-printed Ag nanoparticle ink (AgNI). The AgNI SERS substrates were evaluated for SERS using BPY as a molecular p robe. The printed AgNI dot arrays exhibit an excellent SERS performance and reproducibility. The batch to batch and spot to spot standard deviation value of less than 10 percent was obtained. The results reveal the reproducibility of the AgNI SERS dot arrays and its potential application for SERS substrates.
we have fabricated transparent electronic devices based on graphene materials with thickness down to one single atomic layer by the transfer printing method. The resulting printed graphene devices retain high field effect mobility and have low contac t resistance. The results show that the transfer printing method is capable of high-quality transfer of graphene materials from silicon dioxide substrates, and the method thus will have wide applications in manipulating and delivering graphene materials to desired substrate and device geometries. Since the method is purely additive, it exposes graphene (or other functional materials) to no chemical preparation or lithographic steps, providing greater experimental control over device environment for reproducibility and for studies of fundamental transport mechanisms. Finally, the transport properties of the graphene devices on the PET substrate demonstrate the non-universality of minimum conductivity and the incompleteness of the current transport theory.
This work deals with the characterisation and modelling of the curing process and its associated volume changes of an epoxy based thermoset resin. Measurements from differential scanning calorimetry (DSC) define the progress of the chemical reaction. The related thermochemical volume changes are recorded by an especially constructed experimental setup based on Archimedes principle. Information on measuring procedure and data processing are provided. This includes investigations on compensation of environmental influences, long-term stability and resolution. With the aim of simulating the adhesives curing process, constitutive models representing the reaction kinetics and thermochemical volume changes are presented and the model parameters are identified.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا