ترغب بنشر مسار تعليمي؟ اضغط هنا

A GIM Mechanism from Extra Dimensions

144   0   0.0 ( 0 )
 نشر من قبل Andreas Weiler
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore how to protect extra dimensional models from large flavor changing neutral currents by using bulk and brane flavor symmetries. We show that a GIM mechanism can be built in to warped space models such as Randall-Sundrum or composite Higgs models if flavor mixing is introduced via UV brane kinetic mixings for right handed quarks. We give a realistic implementation both for a model with minimal flavor violation and one with next-to-minimal flavor violation. The latter does not suffer from a CP problem. We consider some of the existing experimental constraints on these models implied by precision electroweak tests.



قيم البحث

اقرأ أيضاً

231 - Clifford Cheung 2007
We propose a model of spontaneous CP violation to address the strong CP problem in warped extra dimensions that relies on sequestering flavor and CP violation. We assume that brane-localized Higgs Yukawa interactions respect a U(3) flavor symmetry th at is broken only by bulk fermion mass and Yukawa terms. All CP violation arises from the vev of a CP-odd scalar field localized in the bulk. To suppress radiative corrections to theta-bar, the doublet quarks in this model are localized on the IR brane. We calculate constraints from flavor-changing neutral currents (FCNCs), precision electroweak measurements, CKM unitarity, and the electric dipole moments in this model and predict theta-bar to be at least about 10^-12.
158 - Luciano Maiani 2013
The GIM Mechanism was introduced by Sheldon L. Glashow, John Iliopoulos and Luciano Maiani in 1970, to explain the suppression of Delta S=1, 2 neutral current processes and is an important element of the unified theories of the weak and electromagnet ic interactions. Origin, predictions and uses of the GIM Mechanism are illustrated. Flavor changing neutral current processes (FCNC) represent today an important benchmark for the Standard Theory and give strong limitations to theories that go beyond ST in the few TeV region. Ideas on the ways constraints on FCNC may be imposed are briefly described.
We discuss a realization of a small field inflation based on string inspired supergravities. In theories accompanying extra dimensions, compactification of them with small radii is required for realistic situations. Since the extra dimension can have a periodicity, there will appear (quasi-)periodic functions under transformations of moduli of the extra dimensions in low energy scales. Such a periodic property can lead to a UV completion of so-called multi-natural inflation model where inflaton potential consists of a sum of multiple sinusoidal functions with a decay constant smaller than the Planck scale. As an illustration, we construct a SUSY breaking model, and then show that such an inflaton potential can be generated by a sum of world sheet instantons in intersecting brane models on extra dimensions containing $T^2/{mathbb Z}_2$ orbifold. We show also predictions of cosmic observables by numerical analyzes.
The universe may have extra spatial dimensions with large volume that we cannot perceive because the energy required to excite modes in the extra directions is too high. Many examples are known of such manifolds with a large volume and a large mass g ap. These compactifications can help explain the weakness of four-dimensional gravity and, as we show here, they also have the capacity to produce reasonable potentials for an inflaton field. Modeling the inflaton as a bulk scalar field, it becomes very weakly coupled in four dimensions, and this enables us to build phenomenologically acceptable inflationary models with tunings at the few per mil level. We speculate on dark matter candidates and the possibility of braneless models in this setting.
263 - Peter T. Winslow 2010
We demonstrate a new model which uses an ADD type braneworld scenario to produce a multi-state theory of dark matter. Compactification of the extra dimensions onto a sphere leads to the association of a single complex scalar in the bulk with multiple Kaluza-Klein towers in an effective four-dimensional theory. A mutually interacting multi-state theory of dark matter arises naturally within which the dark matter states are identified with the lightest Kaluza-Klein particles of fixed magnetic quantum number. These states are protected from decay by a combination of a global U(1) symmetry and the continuous rotational symmetry about the polar axis of the spherical geometry. We briefly discuss the relic abundance calculation and investigate the spin-independent elastic scattering off nucleons of the lightest and next-to-lightest dark matter states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا