ترغب بنشر مسار تعليمي؟ اضغط هنا

Intimate relations between electronic nematic, d-density wave and d-wave superconducting states

205   0   0.0 ( 0 )
 نشر من قبل Hyeonjin Doh
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper consists of two important theoretical observations on the interplay between l = 2 condensates; d-density wave (ddw), electronic nematic and d-wave superconducting states. (1) There is SO(4) invariance at a transition between the nematic and d-wave superconducting states. The nematic and d-wave pairing operators can be rotated into each other by pseudospin SU(2) generators, which are s-wave pairing and electron density operators. The difference between the current work and the previous O(4) symmetry at a transition between the ddw and d-wave superconducting states (Nayak 2000 Phys. Rev. B 62 R6135) is presented. (2) The nematic and ddw operators transform into each other under a unitary transformation. Thus, when a Hamiltonian is invariant under such a transformation, the two states are exactly degenerate. The competition between the nematic and ddw states in the presence of a degeneracy breaking term is discussed.



قيم البحث

اقرأ أيضاً

We show that effective superconducting orders generally emerge at low energy in the superconducting state of graphene with conventionally defined pairing symmetry . We study such a particular interesting example, the $d_{x^2-y^2}+id_{xy}$ spin sing let pairing superconducting state in graphene, which can be generated by electronic correlation as well as induced through a proximity effect with a d-wave superconductor. We find that effectively the d-wave state is a state with mixed s-wave and exotic $p+ip$-wave pairing orders at low energy. This remarkable property leads to distinctive superconducting gap functions and novel behavior of the Andreev conductance spectra.
130 - Yejin Huh , Subir Sachdev 2008
We examine the quantum theory of the spontaneous breaking of lattice rotation symmetry in d-wave superconductors on the square lattice. This is described by a field theory of an Ising nematic order parameter coupled to the gapless fermionic quasipart icles. We determine the structure of the renormalization group to all orders in a 1/N_f expansion, where N_f is the number of fermion spin components. Asymptotically exact results are obtained for the quantum critical theory in which, as in the large N_f theory, the nematic order has a large anomalous dimension, and the fermion spectral functions are highly anisotropic.
We propose a mechanism of spin-triplet superconductivity at the edge of $d$-wave superconductors. Recent theoretical research in $d$-wave superconductors predicted that strong ferromagnetic (FM) fluctuations are induced by large density of states due to edge Andreev bound states (ABS). Here, we construct the linearized gap equation for the edge-induced superconductivity, and perform a numerical study based on a large cluster Hubbard model with bulk $d$-wave superconducting (SC) gap. We find that ABS-induced strong FM fluctuations mediate the $d pm ip$-wave SC state, in which the time-reversal symmetry is broken. The edge-induced $p$-wave transition temperature $T_{cp}$ is slightly lower than the bulk $d$-wave one $T_{cd}$, and the Majorana bound state may be created at the endpoint of the edge.
136 - Z.Y. Weng , Y. Zhou , 2003
We propose a class of wave functions that provide a unified description of antiferromagnetism and d-wave superconductivity in (doped) Mott insulators. The wave function has a Jastrow form and prohibits double occupancies. In the absence of holes, the wave function describes antiferromagnetism accurately. Off diagonal long range order develops at finite doping and the superconducting order parameter has d-wave symmetry. We also show how nodal quasiparticles and neutral spin excitations can be constructed from this wave function.
Variational studies of the t-J model on the square lattice based on infinite projected-entangled pair states (iPEPS) confirm an extremely close competition between a uniform d-wave superconducting state and different stripe states. The site-centered stripe with an in-phase d-wave order has an equal or only slightly lower energy than the stripe with anti-phase d-wave order. The optimal stripe filling is not constant but increases with J/t. A nematic anisotropy reduces the pairing amplitude and the energies of stripe phases are lowered relative to the uniform state with increasing nematicity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا