ﻻ يوجد ملخص باللغة العربية
We consider two critical semi-infinite subsystems with different critical exponents and couple them through their surfaces. The critical behavior at the interface, influenced by the critical fluctuations of the two subsystems, can be quite rich. In order to examine the various possibilities, we study a system composed of two coupled Ashkin-Teller models with different four-spin couplings epsilon, on the two sides of the junction. By varying epsilon, some bulk and surface critical exponents of the two subsystems are continuously modified, which in turn changes the interface critical behavior. In particular we study the marginal situation, for which magnetic critical exponents at the interface vary continuously with the strength of the interaction parameter. The behavior expected from scaling arguments is checked by DMRG calculations.
The universal critical point ratio $Q$ is exploited to determine positions of the critical Ising transition lines on the phase diagram of the Ashkin-Teller (AT) model on the square lattice. A leading-order expansion of the ratio $Q$ in the presence o
The two-dimensional ferromagnetic anisotropic Ashkin-Teller model is investigated through a real-space renormalization-group approach. The critical frontier, separating five distinct phases, recover all the known exacts results for the square lattice
We consider the critical behavior at an interface which separates two semi-infinite subsystems belonging to different universality classes, thus having different set of critical exponents, but having a common transition temperature. We solve this pro
We have investigated the three-color Ashkin-Teller model (3AT), on the Wheatstone bridge hierarchical lattice, by means of a Migdal-Kadanoff renormalization group approach. We have obtained the exact recursion relations for the renormalized couplings
The two-dimensional Ashkin-Teller model provides the simplest example of a statistical system exhibiting a line of critical points along which the critical exponents vary continously. The scaling limit of both the paramagnetic and ferromagnetic phase