ترغب بنشر مسار تعليمي؟ اضغط هنا

Spitzer-MIPS survey of the young stellar content in the Vela Molecular Cloud-D

131   0   0.0 ( 0 )
 نشر من قبل Massimo De Luca
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A new, unbiased Spitzer-MIPS imaging survey (~1.8 square degs) of the young stellar content of the Vela Molecular Cloud-D is presented. The survey is complete down to 5mJy and 250mJy at 24micron (mu) and 70mu, respectively. 849 sources are detected at 24mu and 52 of them also have a 70mu counterpart. The VMR-D region is one that we have already partially mapped in dust and gas millimeter emission, and we discuss the correlation between the Spitzer compact sources and the mm contours. About half of the 24mu sources are located inside the region delimited by the 12CO(1-0) contours (corresponding to only one third of the full area mapped with MIPS) with a consequent density increase of about 100% of the 24mu sources [four times for 70mu ones] moving from outside to inside the CO contours. About 400 sources have a 2MASS counterpart. So we have constructed a Ks vs. Ks-[24] diagram and identified the protostellar population. We find an excess of Class I sources in VMR-D in comparison with other star forming regions. This result is reasonably biased by the sensitivity limits, or, alternatively, may reflect a very short lifetime (<=10^6yr) of the protostellar content in this cloud. The MIPS images have identified embedded cool objects in most of the previously identified starless cores; in addition, there are 6 very young, possibly Class 0 objects identified. Finally we report finding of the driving sources for a set of five out of six very compact protostellar jets previously discovered in near-infrared images.



قيم البحث

اقرأ أيضاً

The Balloon-borne Large-Aperture Submillimeter Telescope (BLAST) carried out a 250, 350 and 500 micron survey of the galactic plane encompassing the Vela Molecular Ridge, with the primary goal of identifying the coldest dense cores possibly associate d with the earliest stages of star formation. Here we present the results from observations of the Vela-D region, covering about 4 square degrees, in which we find 141 BLAST cores. We exploit existing data taken with the Spitzer MIPS, IRAC and SEST-SIMBA instruments to constrain their (single-temperature) spectral energy distributions, assuming a dust emissivity index beta = 2.0. This combination of data allows us to determine the temperature, luminosity and mass of each BLAST core, and also enables us to separate starless from proto-stellar sources. We also analyze the effects that the uncertainties on the derived physical parameters of the individual sources have on the overall physical properties of starless and proto-stellar cores, and we find that there appear to be a smooth transition from the pre- to the proto-stellar phase. In particular, for proto-stellar cores we find a correlation between the MIPS24 flux, associated with the central protostar, and the temperature of the dust envelope. We also find that the core mass function of the Vela-D cores has a slope consistent with other similar (sub)millimeter surveys.
We investigate the young stellar population in the Vela Molecular Ridge, Cloud-D (VMR-D), a star forming (SF) region observed by both Spitzer/NASA and Herschel/ESA space telescope. The point source, band-merged, Spitzer-IRAC catalog complemented with MIPS photometry previously obtained is used to search for candidate young stellar objects (YSO), also including sources detected in less than four IRAC bands. Bona fide YSO are selected by using appropriate color-color and color-magnitude criteria aimed to exclude both Galatic and extragalactic contaminants. The derived star formation rate and efficiency are compared with the same quantities characterizing other SF clouds. Additional photometric data, spanning from the near-IR to the submillimeter, are used to evaluate both bolometric luminosity and temperature for 33 YSOs located in a region of the cloud observed by both Spitzer and Herschel. The luminosity-temperature diagram suggests that some of these sources are representative of Class 0 objects with bolometric temperatures below 70 K and luminosities of the order of the solar luminosity. Far IR observations from the Herschel/Hi-GAL key project for a survey of the Galactic plane are also used to obtain a band-merged photometric catalog of Herschel sources aimed to independently search for protostars. We find 122 Herschel cores located on the molecular cloud, 30 of which are protostellar and 92 starless. The global protostellar luminosity function is obtained by merging the Spitzer and Herschel protostars. Considering that 10 protostars are found in both Spitzer and Herschel list it follows that in the investigated region we find 53 protostars and that the Spitzer selected protostars account for approximately two-thirds of the total.
The G333 giant molecular cloud contains a few star clusters and H II regions, plus a number of condensations currently forming stars. We have mapped 13 of these sources with the appearance of young stellar objects (YSOs) with the Spitzer Infrared Spe ctrograph in the SL, SH, and LH modules (5-36 micron). We use these spectra plus available photometry and images to characterize the YSOs. The spectral energy distributions (SEDs) of all sources peak between 35 and 110 micron, thereby showing their young age. The objects are divided into two groups: YSOs associated with extended emission in IRAC band 2 at 4.5 micron (`outflow sources) and YSOs that have extended emission in all IRAC bands peaking at the longest wavelengths (`red sources). The two groups of objects have distinctly different spectra: All the YSOs associated with outflows show evidence of massive envelopes surrounding the protostar because the spectra show deep silicate absorption features and absorption by ices at 6.0, 6.8, and 15.2 micron. We identify these YSOs with massive envelopes cool enough to contain ice-coated grains as the `bloated protostars in the models of Hosokawa et al. All spectral maps show ionized forbidden lines and PAH emission features. For four of the red sources, these lines are concentrated to the centres of the maps, from which we infer that these YSOs are the source of ionizing photons. Both types of objects show evidence of shocks, with most of the outflow sources showing a line of [S I] in the outflows and two of the red sources showing the more highly excited [Ne III] and [S IV] lines in outflow regions at some distance from the YSOs. The 4.5 micron emission seen in the IRAC band 2 images of the outflow sources is not due to H2 lines, which are too faint in the 5-10 micron wavelength region to be as strong as is needed to account for the IRAC band 2 emission.
We present observations of the Auriga-California Molecular Cloud (AMC) at 3.6, 4.5, 5.8, 8.0, 24, 70 and 160 micron observed with the IRAC and MIPS detectors as part of the Spitzer Gould Belt Legacy Survey. The total mapped areas are 2.5 sq-deg with IRAC and 10.47 sq-deg with MIPS. This giant molecular cloud is one of two in the nearby Gould Belt of star-forming regions, the other being the Orion A Molecular Cloud (OMC). We compare source counts, colors and magnitudes in our observed region to a subset of the SWIRE data that was processed through our pipeline. Using color-magnitude and color-color diagrams, we find evidence for a substantial population of 166 young stellar objects (YSOs) in the cloud, many of which were previously unknown. Most of this population is concentrated around the LkHalpha 101 cluster and the filament extending from it. We present a quantitative description of the degree of clustering and discuss the fraction of YSOs in the region with disks relative to an estimate of the diskless YSO population. Although the AMC is similar in mass, size and distance to the OMC, it is forming about 15 - 20 times fewer stars.
We present Spitzer and Chandra observations of the nearby (~260 pc) embedded stellar cluster in the Serpens Cloud Core. We observed, using Spitzers IRAC and MIPS instruments, in six wavelength bands from 3 to 70 ${mu}m$, to detect thermal emission fr om circumstellar disks and protostellar envelopes, and to classify stars using color-color diagrams and spectral energy distributions (SEDs). These data are combined with Chandra observations to examine the effects of circumstellar disks on stellar X-ray properties. Young diskless stars were also identified from their increased X-ray emission. We have identified 138 YSOs in Serpens: 22 class 0/I, 16 flat spectrum, 62 class II, 17 transition disk, and 21 class III stars; 60 of which exhibit X-ray emission. Our primary results are the following: 1.) ten protostars detected previously in the sub-millimeter are detected at lambda < 24 microns, seven at lambda < 8 microns, 2.) the protostars are more closely grouped than more evolved YSOs (median separation : ~0.024 pc, and 3.) the luminosity and temperature of the X-ray emitting plasma around these YSOs does not show any significant dependence on evolutionary class. We combine the infrared derived values of AK and X-ray values of NH for 8 class III objects and find that the column density of hydrogen gas per mag of extinctions is less than half the standard interstellar value, for AK > 1. This may be the result of grain growth through coagulation and/or the accretion of volatiles in the Serpens cloud core.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا