ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymptotic oracle properties of SCAD-penalized least squares estimators

290   0   0.0 ( 0 )
 نشر من قبل Jian Huang
 تاريخ النشر 2007
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the asymptotic properties of the SCAD-penalized least squares estimator in sparse, high-dimensional, linear regression models when the number of covariates may increase with the sample size. We are particularly interested in the use of this estimator for simultaneous variable selection and estimation. We show that under appropriate conditions, the SCAD-penalized least squares estimator is consistent for variable selection and that the estimators of nonzero coefficients have the same asymptotic distribution as they would have if the zero coefficients were known in advance. Simulation studies indicate that this estimator performs well in terms of variable selection and estimation.



قيم البحث

اقرأ أيضاً

The asymptotic optimality (a.o.) of various hyper-parameter estimators with different optimality criteria has been studied in the literature for regularized least squares regression problems. The estimators include e.g., the maximum (marginal) likeli hood method, $C_p$ statistics, and generalized cross validation method, and the optimality criteria are based on e.g., the inefficiency, the expectation inefficiency and the risk. In this paper, we consider the regularized least squares regression problems with fixed number of regression parameters, choose the optimality criterion based on the risk, and study the a.o. of several cross validation (CV) based hyper-parameter estimators including the leave $k$-out CV method, generalized CV method, $r$-fold CV method and hold out CV method. We find the former three methods can be a.o. under mild assumptions, but not the last one, and we use Monte Carlo simulations to illustrate the efficacy of our findings.
136 - Qiyang Han , Jon A. Wellner 2017
We study the performance of the Least Squares Estimator (LSE) in a general nonparametric regression model, when the errors are independent of the covariates but may only have a $p$-th moment ($pgeq 1$). In such a heavy-tailed regression setting, we s how that if the model satisfies a standard `entropy condition with exponent $alpha in (0,2)$, then the $L_2$ loss of the LSE converges at a rate begin{align*} mathcal{O}_{mathbf{P}}big(n^{-frac{1}{2+alpha}} vee n^{-frac{1}{2}+frac{1}{2p}}big). end{align*} Such a rate cannot be improved under the entropy condition alone. This rate quantifies both some positive and negative aspects of the LSE in a heavy-tailed regression setting. On the positive side, as long as the errors have $pgeq 1+2/alpha$ moments, the $L_2$ loss of the LSE converges at the same rate as if the errors are Gaussian. On the negative side, if $p<1+2/alpha$, there are (many) hard models at any entropy level $alpha$ for which the $L_2$ loss of the LSE converges at a strictly slower rate than other robust estimators. The validity of the above rate relies crucially on the independence of the covariates and the errors. In fact, the $L_2$ loss of the LSE can converge arbitrarily slowly when the independence fails. The key technical ingredient is a new multiplier inequality that gives sharp bounds for the `multiplier empirical process associated with the LSE. We further give an application to the sparse linear regression model with heavy-tailed covariates and errors to demonstrate the scope of this new inequality.
71 - Michael Celentano 2019
We show that the high-dimensional behavior of symmetrically penalized least squares with a possibly non-separable, symmetric, convex penalty in both (i) the Gaussian sequence model and (ii) the linear model with uncorrelated Gaussian designs nearly m atches the behavior of least squares with an appropriately chosen separable penalty in these same models. The similarity in behavior is precisely quantified by a finite-sample concentration inequality in both cases. Our results help clarify the role non-separability can play in high-dimensional M-estimation. In particular, if the empirical distribution of the coordinates of the parameter is known --exactly or approximately-- there are at most limited advantages to using non-separable, symmetric penalties over separable ones. In contrast, if the empirical distribution of the coordinates of the parameter is unknown, we argue that non-separable, symmetric penalties automatically implement an adaptive procedure which we characterize. We also provide a partial converse which characterizes adaptive procedures which can be implemented in this way.
Neural networks are one of the most popularly used methods in machine learning and artificial intelligence nowadays. Due to the universal approximation theorem (Hornik et al. (1989)), a neural network with one hidden layer can approximate any continu ous function on a compact support as long as the number of hidden units is sufficiently large. Statistically, a neural network can be classified into a nonlinear regression framework. However, if we consider it parametrically, due to the unidentifiability of the parameters, it is difficult to derive its asymptotic properties. Instead, we considered the estimation problem in a nonparametric regression framework and use the results from sieve estimation to establish the consistency, the rates of convergence and the asymptotic normality of the neural network estimators. We also illustrate the validity of the theories via simulations.
In this paper, we consider the usual linear regression model in the case where the error process is assumed strictly stationary. We use a result from Hannan, who proved a Central Limit Theorem for the usual least squares estimator under general condi tions on the design and on the error process. We show that for a large class of designs, the asymptotic covariance matrix is as simple as the independent and identically distributed case. We then estimate the covariance matrix using an estimator of the spectral density whose consistency is proved under very mild conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا