ﻻ يوجد ملخص باللغة العربية
We study in this Letter the dynamical effects of the limited bandwidth of the control electronics in a solid-state (Nd-YAG) ring laser gyroscope. We derive a stability condition for the rotation-sensing regime in the case of a first-order control loop, showing that the smallest measurable rotation speed depends directly on the cutoff frequency value. Our experimental measurements are in good agreement with this prediction.
We report experimental and theoretical study of a rotating diode-pumped Nd-YAG ring laser with active beat note stabilization. Our experimental setup is described in the usual Maxwell-Bloch formalism. We analytically derive a stability condition and
We study the suppression of nonlinear interactions in resonant macroscopic quantum devices in the case of the solid-state ring laser gyroscope. These nonlinear interactions are tuned by vibrating the gain medium along the cavity axis. Beat note occur
A theoretical and experimental investigation of the effects of mode coupling in a resonant macro- scopic quantum device is achieved in the case of a ring laser. In particular, we show both analytically and experimentally that such a device can be use
Interferometric gyroscope systems are being developed with the goal of measuring general-relativistic effects including frame-dragging effects. Such devices are also capable of performing searches for Lorentz violation. We summarize efforts that rela
High-power, diffraction-limited organic solid-state laser operation has been achieved in a vertical external cavity surface-emitting organic laser (VECSOL), pumped by a low-cost compact blue laser diode. The diode-pumped VECSOLs were demonstrated wit