ترغب بنشر مسار تعليمي؟ اضغط هنا

Utility function estimation: the entropy approach

139   0   0.0 ( 0 )
 نشر من قبل Andreia Dionisio
 تاريخ النشر 2007
  مجال البحث مالية فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The maximum entropy principle can be used to assign utility values when only partial information is available about the decision makers preferences. In order to obtain such utility values it is necessary to establish an analogy between probability and utility through the notion of a utility density function. According to some authors [Soofi (1990), Abbas (2006a) (2006b), Sandow et al. (2006), Friedman and Sandow (2006), Darooneh (2006)] the maximum entropy utility solution embeds a large family of utility functions. In this paper we explore the maximum entropy principle to estimate the utility function of a risk averse decision maker.



قيم البحث

اقرأ أيضاً

Many complex systems generate multifractal time series which are long-range cross-correlated. Numerous methods have been proposed to characterize the multifractal nature of these long-range cross correlations. However, several important issues about these methods are not well understood and most methods consider only one moment order. We study the joint multifractal analysis based on partition function with two moment orders, which was initially invented to investigate fluid fields, and derive analytically several important properties. We apply the method numerically to binomial measures with multifractal cross correlations and bivariate fractional Brownian motions without multifractal cross correlations. For binomial multifractal measures, the explicit expressions of mass function, singularity strength and multifractal spectrum of the cross correlations are derived, which agree excellently with the numerical results. We also apply the method to stock market indexes and unveil intriguing multifractality in the cross correlations of index volatilities.
241 - Kun Guo 2011
Using a recently introduced method to quantify the time varying lead-lag dependencies between pairs of economic time series (the thermal optimal path method), we test two fundamental tenets of the theory of fixed income: (i) the stock market variatio ns and the yield changes should be anti-correlated; (ii) the change in central bank rates, as a proxy of the monetary policy of the central bank, should be a predictor of the future stock market direction. Using both monthly and weekly data, we found very similar lead-lag dependence between the S&P500 stock market index and the yields of bonds inside two groups: bond yields of short-term maturities (Federal funds rate (FFR), 3M, 6M, 1Y, 2Y, and 3Y) and bond yields of long-term maturities (5Y, 7Y, 10Y, and 20Y). In all cases, we observe the opposite of (i) and (ii). First, the stock market and yields move in the same direction. Second, the stock market leads the yields, including and especially the FFR. Moreover, we find that the short-term yields in the first group lead the long-term yields in the second group before the financial crisis that started mid-2007 and the inverse relationship holds afterwards. These results suggest that the Federal Reserve is increasingly mindful of the stock market behavior, seen at key to the recovery and health of the economy. Long-term investors seem also to have been more reactive and mindful of the signals provided by the financial stock markets than the Federal Reserve itself after the start of the financial crisis. The lead of the S&P500 stock market index over the bond yields of all maturities is confirmed by the traditional lagged cross-correlation analysis.
167 - T. Gubiec , M. Wilinski 2014
We describe the impact of the intra-day activity pattern on the autocorrelation function estimator. We obtain an exact formula relating estimators of the autocorrelation functions of non-stationary process to its stationary counterpart. Hence, we pro ved that the day seasonality of inter-transaction times extends the memory of as well the process itself as its absolute value. That is, both processes relaxation to zero is longer.
The relationship between the size and the variance of firm growth rates is known to follow an approximate power-law behavior $sigma(S) sim S^{-beta(S)}$ where $S$ is the firm size and $beta(S)approx 0.2$ is an exponent weakly dependent on $S$. Here w e show how a model of proportional growth which treats firms as classes composed of various number of units of variable size, can explain this size-variance dependence. In general, the model predicts that $beta(S)$ must exhibit a crossover from $beta(0)=0$ to $beta(infty)=1/2$. For a realistic set of parameters, $beta(S)$ is approximately constant and can vary in the range from 0.14 to 0.2 depending on the average number of units in the firm. We test the model with a unique industry specific database in which firm sales are given in terms of the sum of the sales of all their products. We find that the model is consistent with the empirically observed size-variance relationship.
We show that univariate and symmetric multivariate Hawkes processes are only weakly causal: the true log-likelihoods of real and reversed event time vectors are almost equal, thus parameter estimation via maximum likelihood only weakly depends on the direction of the arrow of time. In ideal (synthetic) conditions, tests of goodness of parametric fit unambiguously reject backward event times, which implies that inferring kernels from time-symmetric quantities, such as the autocovariance of the event rate, only rarely produce statistically significant fits. Finally, we find that fitting financial data with many-parameter kernels may yield significant fits for both arrows of time for the same event time vector, sometimes favouring the backward time direction. This goes to show that a significant fit of Hawkes processes to real data with flexible kernels does not imply a definite arrow of time unless one tests it.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا