We investigate the possibility of boiling instability of nuclear liquid in the inner core of the proto-neutron star formed in the core collapse of a type II supernova. We derive a simple criterion for boiling to occur. Using this criterion for one of best described equations of state of supernova matter, we find that boiling is quite possible under the conditions realized inside the proto-neutron star. We discuss consequences of this process such as the increase of heat transfer rate and pressure in the boiling region. We expect that taking this effect into account in the conventional neutrino-driven delayed-shock mechanism of type II supernova explosions can increase the explosion energy and reduce the mass of the neutron-star remnant.