ﻻ يوجد ملخص باللغة العربية
We report formation of self organized InP nano dots using 3 keV Ar+ ion sputtering, at $15^circ$ incidence from surface normal, on InP(111) surface. Morphology and optical properties of the sputtered surface, as a function of sputtering time, have been investigated by Scanning Probe Microscopy and Raman Scattering techniques. Uniform patterns of nano dots are observed for different durations of sputtering. The sizes and the heights of these nano dots vary between 10 to 100 nm and 20 to 40 nm, respectively. With increasing of sputtering time, t, the size and height of these nano dots increases up to a certain sputtering time $t_c$. However beyond $t_c$, the dots break down into smaller nanostructures, and as a result, the size and height of these nanostructures decrease. The uniformity and regularity of these structures are also lost for sputtering beyond $t_c$. The crossover behavior is also observed in the rms surface roughness. Raman investigations of InP nano dots reveal optical phonon softening due to phonon confinement in the surface nano dots.
Regular arrays of InP nano pillars have been fabricated by low energy Electron Cyclotron Resonance (ECR) Ar+ ion irradiation on InP(111) surface. Several scanning electron microscopy (SEM) images have been utilized to invetsigate the width, height, a
We have studied the surface modifications as well as the surface roughness of the InP(111) surfaces after 1.5 MeV Sb ion implantations. Scanning Probe Microscope (SPM) has been utilized to investigate the ion implanted InP(111) surfaces. We observe t
Coherent grazing-incidence small-angle X-ray scattering is used to investigate the average kinetics and the fluctuation dynamics during self-organized nanopatterning of silicon by Ar$^+$ bombardment at 65$^{circ}$ polar angle. At early times, the sur
Site-controlled quantum dots formed during the deposition of (Al)GaAs layers by metalorganic vapor-phase epitaxy on GaAs(111)B substrates patterned with inverted pyramids result in geometric and compositional self-ordering along the vertical axis of
We have studied the modification in the Surface morphology of the Si(100) surfaces after 1.5 MeV Sb implantation. Scanning Probe Microscopy has been utilized to investigate the ion implanted surfaces. We observe the formation of nano-sized defect fea