ترغب بنشر مسار تعليمي؟ اضغط هنا

The Globular Cluster Luminosity Function and Specific Frequency in Dwarf Elliptical Galaxies

149   0   0.0 ( 0 )
 نشر من قبل Bryan W. Miller
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Bryan W. Miller




اسأل ChatGPT حول البحث

The globular cluster luminosity function, specific globular cluster frequency, S_N, specific globular cluster mass, T_MP, and globular cluster mass fraction in dwarf elliptical galaxies are explored using the full 69 galaxy sample of the HST WFPC2 Dwarf Elliptical Galaxy Snapshot Survey. The GCLFs of the dEs are well-represented with a t_5 function with a peak at M_{V,Z}^0(dE,HST) = -7.3 +/- 0.1. This is ~0.3 magnitudes fainter than the GCLF peaks in giant spiral and elliptical galaxies, but the results are consistent within the uncertainties. The bright-end slope of the luminosity distribution has a power-law form with slope alpha = -1.9 +/- 0.1. The trend of increasing S_N or T_MP with decreasing host galaxy luminosity is confirmed. The mean value for T_MP in dE,N galaxies is about a factor of two higher than the mean value for non-nucleated galaxies and the distributions of T_MP in dE,N and dE,noN galaxies are statistically different. These data are combined with results from the literature for a wide range of galaxy types and environments. At low host galaxy masses the distribution of T_MP for dE,noN and dI galaxies are similar. This supports the idea that one pathway for forming dE,noN galaxies is by the stripping of dIs. The formation of nuclei and the larger values of T_MP in dE,N galaxies may be due to higher star formation rates and star cluster formation efficiencies due to interactions in galaxy cluster environments.



قيم البحث

اقرأ أيضاً

411 - Ahmed H. Abdullah 2019
Globular clusters (GC) are important objects for tracing the early evolution of a galaxy. We study the relation between the properties of globular cluster systems - as quantified by the GC specific frequency (SN) - and the properties of their host ga laxies. In order to understand the origin of the relation between the GC specific frequency (SN) and galaxy mass, we devise a theoretical model for the specific frequency (SN,th). GC erosion is considered to be an important aspect for shaping this relation, since observations show that galaxies with low densities have a higher SN, while high density galaxies have a small SN. We construct a model based on the hypothesis that star-formation is clustered and depends on the minimum embedded star cluster mass (Mecl,min), the slope of the power-law embedded cluster mass function (beta) and the relation between the star formation rate (SFR) and the maximum star cluster mass (Mecl,max). We find an agreement between the primordial value of the specific frequency (SNi) and our model for beta between 1.5 and 2.5 with Mecl,min <10^4 Msun.
76 - B. W. Miller 1998
The specific globular cluster frequencies (S_N) for 24 dwarf elliptical (dE) galaxies in the Virgo and Fornax Clusters and the Leo Group imaged with the Hubble Space Telescope are presented. Combining all available data, we find that for nucleated dE s --- which are spatially distributed like giant ellipticals in galaxy clusters --- S_N(dE,N)=6.5 +- 1.2 and S_N increases with M_V, while for non-nucleated dEs --- which are distributed like late-type galaxies --- S_N(dE,noN)=3.1 +- 0.5 and there is little or no trend with M_V. The S_N values for dE galaxies are thus on average significantly higher than those for late-type galaxies, which have S_N < 1. This suggests that dE galaxies are more akin to giant Es than to late-type galaxies. If there are dormant or stripped irregulars hiding among the dE population, they are likely to be among the non-nucleated dEs. Furthermore, the similarities in the properties of the globular clusters and in the spatial distributions of dE,Ns and giant Es suggest that neither galaxy mass or galaxy metallicity is responsible for high values of S_N. Instead, most metal-poor GCs may have formed in dwarf-sized fragments that merged into larger galaxies.
It has been proposed that a galaxys nova rate might be enhanced by the production of nova progenitor binaries in the dense cores of its globular clusters (GCs). To explore this idea, relative nova rates in three Virgo elliptical galaxies, M87, M49 an d M84, which have significantly different GC specific frequencies ($S_{N}$) of 14, 3.6, and 1.6, respectively, were measured over the course of 4 epochs spanning a period of 14 months. To simplify the analysis, observations of the nearly equidistant galaxies were made on the same nights, with the same integration times, and through the same filter (H$alpha$), so that the relative numbers of novae discovered would reflect the relative nova rates. At the conclusion of our survey we found a total of 27 novae associated with M87, 37 with M49, and 19 with M84. After correcting for survey completeness, we found annual nova rates of $154^{+23}_{-19}$, $189^{+26}_{-22}$, and $95^{+15}_{-14}$, for M87, M49, and M84, respectively, corresponding to $K$-band luminosity-specific nova rates of $3.8pm1.0$, $3.4pm0.6$, and $3.0pm0.6$ novae per year per $10^{10}~L_{K,odot}$. The overall results of our study suggest that a galaxys nova rate simply scales with its luminosity, and is insensitive to its GC specific frequency. Two novae, one in M87 and one in M84, were found to be spatially coincident with known GCs. After correcting for the mass fraction in GCs, we estimate that novae are likely enhanced relative to the field by at least an order of magnitude in the GC systems of luminous Virgo ellipticals.
We present results from a study of the globular cluster luminosity function (GCLF) in a sample of 89 early-type galaxies observed as part of the ACS Virgo Cluster Survey. Using a Gaussian parametrization of the GCLF, we find a highly significant corr elation between the GCLF dispersion, sigma, and the galaxy luminosity, M_B, in the sense that the GC systems in fainter galaxies have narrower luminosity functions. The GCLF dispersions in the Milky Way and M31 are fully consistent with this trend, implying that the correlation between sigma and galaxy luminosity is more fundamental than older suggestions that GCLF shape is a function of galaxy Hubble type. We show that the sigma - M_B relation results from a bonafide narrowing of the distribution of (logarithmic) cluster masses in fainter galaxies. We further show that this behavior is mirrored by a steepening of the GC mass function for relatively high masses, M >~ 3 x 10^5 M_sun, a mass regime in which the shape of the GCLF is not strongly affected by dynamical evolution over a Hubble time. We argue that this trend arises from variations in initial conditions and requires explanation by theories of cluster formation. Finally, we confirm that in bright galaxies, the GCLF turns over at the canonical mass scale of M_TO ~ 2 x 10^5 M_sun. However, we find that M_TO scatters to lower values (~1-2 x 10^5 M_sun) in galaxies fainter than M_B >~ -18.5, an important consideration if the GCLF is to be used as a distance indicator for dwarf ellipticals.
We quantify to what extent tidal erosion of globular clusters (GCs) has contributed to the observed u-shaped relation between GC specific frequencies S_N and host galaxy luminosity M_V. We used our MUESLI code to calculate GC survival rates for typic al early-type galaxy potentials covering a wide range of observed galaxy properties. We do this for isotropic and radially anisotropic GC velocity distributions. We find that the calculated GC survival fraction, f_s, depends linearly on the logarithm of the 3D mass density, rho_3D, within the galaxys half light radius, with f_s proportional to (rho_3D)^(-0.17). For a given galaxy, survival rates are lower for radially anisotropic configurations than for the isotropic GC cases. We apply these relations to a literature sample of 219 early-type galaxies from Harris et al. (2013) in the range M_V=[-24.5:-15.5] mag. The expected GC survival fraction ranges from ~50% for the most massive galaxies with the largest radii to ~10% for the most compact galaxies. We find that intermediate luminosity galaxies M_V=[-20.5:-17.5] mag have the strongest expected GC erosion. Within the considered literature sample, the predicted GC survival fraction therefore defines a u-shaped relation with M_V, similar to the relation between specific frequency S_N and M_V. As a consequence, the u-shape of S_N vs. M_V gets erased almost entirely when correcting the S_N values for the effect of GC erosion. We conclude that tidal erosion is an important contributor to the u-shaped relation between GC specific frequency and host galaxy luminosity. It must be taken into account when inferring primordial star cluster formation efficiencies from observations of GC systems in the nearby universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا