ﻻ يوجد ملخص باللغة العربية
We investigate the multiphoton ionization of hydrogen driven by a strong bichromatic microwave field. In a regime where classical and quantum simulations agree, periodic orbit analysis captures the mechanism: Through the linear stability of periodic orbits we match qualitatively the variation of experimental ionization rates with control parameters such as the amplitudes of the two modes of the field or their relative phases. Moreover, we discuss an empirical formula which reproduces quantum simulations to a high degree of accuracy. This quantitative agreement shows the mechanism by which short periodic orbits organize the dynamics in multiphoton ionization. We also analyze the effect of longer pulse durations. Finally we compare our results with those based on the peak amplitude rule. Both qualitative and quantitative analyses are implemented for different mode locked fields. In parameter space, the localization of the period doubling and halving allows one to predict the set of parameters (amplitudes and phase lag) where ionization occurs.
We discuss the influence of periodic orbits on the dissociation of a model diatomic molecule driven by a strong bichromatic laser fields. Through the stability of periodic orbits we analyze the dissociation probability when parameters like the two am
The multiphoton ionization of hydrogen by a strong bichromatic microwave field is a complex process prototypical for atomic control research. Periodic orbit analysis captures this complexity: Through the stability of periodic orbits we can match qual
A systematic study of closed classical orbits of the hydrogen atom in crossed electric and magnetic fields is presented. We develop a local bifurcation theory for closed orbits which is analogous to the well-known bifurcation theory for periodic orbi
Closed-orbit theory provides a general approach to the semiclassical description of photo-absorption spectra of arbitrary atoms in external fields, the simplest of which is the hydrogen atom in an electric field. Yet, despite its apparent simplicity,
We discuss various bifurcation problems in which two isolated periodic orbits exchange periodic ``bridge orbit(s) between two successive bifurcations. We propose normal forms which locally describe the corresponding fixed point scenarios on the Poinc