ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling Dense Stellar Systems

114   0   0.0 ( 0 )
 نشر من قبل Piet Hut
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Black holes and neutron stars present extreme forms of matter that cannot be created as such in a laboratory on Earth. Instead, we have to observe and analyze the experiments that are ongoing in the Universe. The most telling observations of black holes and neutron stars come from dense stellar systems, where stars are crowded close enough to each other to undergo frequent interactions. It is the interplay between black holes, neutron stars and other objects in a dense environment that allows us to use observations to draw firm conclusions about the properties of these extreme forms of matter, through comparisons with simulations. The art of modeling dense stellar systems through computer simulations forms the main topic of this review.



قيم البحث

اقرأ أيضاً

188 - Philip F. Hopkins 2009
We compile observations of the surface mass density profiles of dense stellar systems, including globular clusters in the Milky Way and nearby galaxies, massive star clusters in nearby starbursts, nuclear star clusters in dwarf spheroidals and late-t ype disks, ultra-compact dwarfs, and galaxy spheroids spanning the range from low-mass cusp bulges and ellipticals to massive core ellipticals. We show that in all cases the maximum stellar surface density attained in the central regions of these systems is similar, Sigma_max ~ 10^11 M_sun/kpc^2 (~20 g/cm^2), despite the fact that the systems span 7 orders of magnitude in total stellar mass M_star, 5 in effective radius R_e, and have a wide range in effective surface density M_star/R_e^2. The surface density limit is reached on a wide variety of physical scales in different systems and is thus not a limit on three-dimensional stellar density. Given the very different formation mechanisms involved in these different classes of objects, we argue that a single piece of physics likely determines Sigma_max. The radiation fields and winds produced by massive stars can have a significant influence on the formation of both star clusters and galaxies, while neither supernovae nor black hole accretion are important in star cluster formation. We thus conclude that feedback from massive stars likely accounts for the observed Sigma_max, plausibly because star formation reaches an Eddington-like flux that regulates the growth of these diverse systems. This suggests that current models of galaxy formation, which focus on feedback from supernovae and active galactic nuclei, are missing a crucial ingredient.
Using our recently improved Monte Carlo evolution code, we study the evolution of the binary fraction in globular clusters. In agreement with previous N-body simulations, we find generally that the hard binary fraction in the core tends to increase w ith time over a range of initial cluster central densities for initial binary fractions <~ 90%. The dominant processes driving the evolution of the core binary fraction are mass segregation of binaries into the cluster core and preferential destruction of binaries there. On a global scale, these effects and the preferential tidal stripping of single stars tend to roughly balance, leading to overall cluster binary fractions that are roughly constant with time. Our findings suggest that the current hard binary fraction near the half-mass radius is a good indicator of the hard primordial binary fraction. However, the relationship between the true binary fraction and the fraction of main-sequence stars in binaries (which is typically what observers measure) is non-linear and rather complicated. We also consider the importance of soft binaries, which not only modify the evolution of the binary fraction, but can drastically change the evolution of the cluster as a whole. Finally, we describe in some detail the recent addition of single and binary stellar evolution to our cluster evolution code.
We study dynamical interactions of star--planet binaries with other single stars. We derive analytical cross sections for all possible outcomes, and confirm them with numerical scattering experiments. We find that a wide mass ratio in the binary intr oduces a region in parameter space that is inaccessible to comparable-mass systems, in which the nature of the dynamical interaction is fundamentally different from what has traditionally been considered in the literature on binary scattering. We study the properties of the planetary systems that result from the scattering interactions for all regions of parameter space, paying particular attention to the location of the hard--soft boundary. The structure of the parameter space turns out to be significantly richer than a simple statement of the location of the hard--soft boundary would imply. We consider the implications of our findings, calculating characteristic lifetimes for planetary systems in dense stellar environments, and applying the results to previous analytical studies, as well as past and future observations. Recognizing that the system PSR B1620-26 in the globular cluster M4 lies in the new region of parameter space, we perform a detailed analysis quantifying the likelihood of different scenarios in forming the system we see today.
We describe AMUSE, the Astrophysical Multipurpose Software Environment, a programming framework designed to manage multi-scale, multi-physics simulations in a hierarchical, extensible, and internally consistent way. Constructed as a collection of ind ividual modules, AMUSE allows computational tools for different physical domains to be easily combined into a single task. It facilitates the coupling of modules written in different languages by providing inter-language tools and a standard programming interface that represents a balance between generality and computational efficiency. The framework currently incorporates the domains of stellar dynamics, stellar evolution, gas dynamics, and radiative transfer. We present some applications of the framework and outline plans for future development of the package.
77 - Pavel Kroupa 2008
This chapter is based on four lectures given at the Cambridge N-body school Cambody. The material covered includes the IMF, the 6D structure of dense clusters, residual gas expulsion and the initial binary population. It is aimed at those needing to initialise stellar populations for a variety of purposes (N-body experiments, stellar population synthesis).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا