ﻻ يوجد ملخص باللغة العربية
We analyzed the spectroscopic data from the PN and the MOS cameras in the 0.4-10 keV band. We also used an archival BeppoSAX 1-50 keV observation of IRAS 09104+4109 to investigate possible variations of the quasar emission. The X-ray emission in the EPIC band is dominated by the intra-cluster medium thermal emission. We found that the quasar contributes ~35% of the total flux in the 2-10 keV band. Both a transmission- (through a Compton-thin absorber with a Compton optical depth of tau_C~0.3, i.e. Nh~5 x 10^{23} cm^-2) and a reflection-dominated (tau_C>1) model provide an excellent fit to the quasar continuum emission. However, the value measured for the EW of Fe Kalpha emission line is only marginally consistent with the presence of a Compton-thick absorber in a reflection-dominated scenario, which had been suggested by a previous, marginal (i.e. 2.5sigma) detection with the hard X-ray (15-50 keV), non-imaging BeppoSAX/PDS instrument. Moreover, the value of luminosity in the 2-10 keV band measured by the transmission-dominated model is fully consistent with that expected on the basis of the bolometric luminosity of IRAS 09104+4109. From the analysis of the XMM-Newton data we therefore suggest the possibility that the absorber along the line of sight to the nucleus of IRAS 09104+4109 is Compton-thin. Alternatively, the absorber column density could have changed from Compton-thick to -thin in the five years elapsed between the observations. If this is the case, then IRAS 09104+4109 is the first changing-look quasar ever detected.
We present a long (~76 ks) Chandra observation of IRAS 09104+4109, a hyper-luminous galaxy, optically classified as a Type 2 AGN hosted in a cD galaxy in a cluster at z=0.442. We also report on the results obtained by fitting its broad-band spectral
If the disappearance of the broad emission lines observed in changing-look quasars were caused by the obscuration of the quasar core through moving dust clouds in the torus, high linear polarization typical of type 2 quasars would be expected. We mea
Mrk 590 was originally classified as a Seyfert 1 galaxy, but then it underwent dramatic changes: the nuclear luminosity dropped by over two orders of magnitude and the broad emission lines all but disappeared from the optical spectrum. Here we presen
We report on the nuclear X-ray properties of the radio galaxy NGC 6251 observed with XMM-Newton. NGC 6251 is a well-known radio galaxy with intermediate FRI/II radio properties. It is optically classified as a Seyfert 2 and hosts a supermassive black
The search for heavily obscured active galactic nuclei (AGNs) has been revitalized in the last five years by NuSTAR, which has provided a good census and spectral characterization of a population of such objects, mostly at low redshift, thanks to its