ترغب بنشر مسار تعليمي؟ اضغط هنا

XMM-Newton unveils the type 2 nature of the BLRG 3C 445

134   0   0.0 ( 0 )
 نشر من قبل Gabriele Ponti
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P. Grandi




اسأل ChatGPT حول البحث

We present an observation of XMM-Newton that unambiguously reveals the ``Seyfert 2 nature of the Broad Line Radio Galaxy 3C 445. For the first time the soft excess of this source has been resolved. It consists of unobscured scattered continuum flux and emission lines, likely produced in a warm photoionized gas near the pole of an obscuring torus. The presence of circumnuclear (likely stratified) matter is supported by the complex obscuration of the nuclear region. Seventy percent of the nuclear radiation (first component) is indeed obscured by a column density ~4*10^{23} cm^{-2}, and 30 % (second component) is filtered by ~7* 10^{22} cm^{-2}. The first component is nuclear radiation directly observed by transmission through the thicker regions. The second one is of more uncertain nature. If the observer has a deep view into the nucleus but near the edge of the torus, it could be light scattered by the inner wall of the torus and/or by photoionized gas within the Broad Line Region observed through the thinner rim of the circumnuclear matter.



قيم البحث

اقرأ أيضاً

A series of nine XMM-Newton observations of the radio-loud quasar 3C 273 are presented, concentrating mainly on the soft excess. Although most of the individual observations do not show evidence for iron emission, co-adding them reveals a weak, broad line (EW ~ 56 eV). The soft excess component is found to vary, confirming previous work, and can be well fitted with multiple blackbody components, with temperatures ranging between ~40 and ~330 eV, together with a power-law. Alternatively, a Comptonisation model also provides a good fit, with a mean electron temperature of ~350 eV, although this value is higher when the soft excess is more luminous over the 0.5-10 keV energy band. In the RGS spectrum of 3C 273, a strong detection of the OVII He-alpha absorption line at zero redshift is made; this may originate in warm gas in the local intergalactic medium, consistent with the findings of both Fang et al. (2003) and Rasmussen et al. (2003).
423 - E. Costantini 2010
We present the results of a ~160 ks-long XMM-Newton observation of the Seyfert 1 galaxy Mrk 279. The spectrum shows evidence of both broad and narrow emission features. The Fe K alpha line may be equally well explained by a single broad Gaussian (FWH M~10,000 km/s) or by two components: an unresolved core plus a very broad profile (FWHM~14,000 km/s). For the first time we quantified, via the locally optimally emitting cloud model, the contribution of the broad line region (BLR) to the absolute luminosity of the broad component of the Fe K alpha at 6.4 keV. We find that the contribution of the BLR is only ~3%. In the two-line component scenario, we also evaluated the contribution of the highly ionized gas component, which produces the FeXXVI line in the iron K region. This contribution to the narrow core of the Fe K alpha line is marginal <0.1%. Most of the luminosity of the unresolved, component of Fe K alpha may come from the obscuring torus, while the very-broad associated component may come from the accretion disk. However, models of reflection by cold gas are difficult to test because of the limited energy band. The FeXXVI line at 6.9 keV is consistent to be produced in a high column density (N_H~10^23 cm^{-2}), extremely ionized (logxi~5.5-7) gas. This gas may be a highly ionized outer layer of the torus.
343 - G. Salvesen 2008
We report on an XMM-Newton observation of the z=1.055 quasar and Giga-hertz Peaked Spectrum (GPS) source 3C 287. Our 62.3 ksec observation provides an exceptional X-ray view of a prominent member of this important subclass of active galactic nuclei ( AGN). The X-ray spectra of 3C 287 are consistent with a simple absorbed power-law with a spectral index of Gamma = 1.72 +/- 0.02. Our fits imply a bolometric luminosity of L = 5.8 +/- 0.2 E+45 erg/s over the 0.3-10.0 keV band; this gives a mass lower limit of M > 4.6 E+7 Msun, assuming X-rays contribute 10% of the bolometric luminosity and radiation at the Eddington limit. Iron emission lines are common in the X-ray spectra of many AGN, but the observed spectra appear to rule out strong emission lines in 3C 287. The simple power-law spectrum and absence of strong emission lines may support a picture where our line of sight intersects a relativistic jet. Milliarcsecond radio imaging of 3C 287 appears to support this interpretation. We discuss our results in the context of different AGN sub-classes and the possibility that GPS sources harbor newly-formed black hole jets.
141 - Allison Bostrom 2014
We present the first high signal-to-noise XMM-Newton observations of the broad-line radio galaxy 3C 411. After fitting various spectral models, an absorbed double power-law continuum and a blurred relativistic disk reflection model (kdblur) are found to be equally plausible descriptions of the data. While the softer power-law component ($Gamma$=2.11) of the double power-law model is entirely consistent with that found in Seyfert galaxies (and hence likely originates from a disk corona), the additional power law component is very hard ($Gamma$=1.05); amongst the AGN zoo, only flat-spectrum radio quasars have such hard spectra. Together with the very flat radio-spectrum displayed by this source, we suggest that it should instead be classified as a FSRQ. This leads to potential discrepancies regarding the jet inclination angle, with the radio morphology suggesting a large jet inclination but the FSRQ classification suggesting small inclinations. The kdblur model predicts an inner disk radius of at most 20 r$_g$ and relativistic reflection.
We report results on a 40 ks XMM-Newton observation of the Type 2 quasar 3C 234. Optical spectropolarimetric data have demonstrated the presence of a hidden broad-line region in this powerful (M_V <~ -24.2 after reddening and starlight correction) na rrow-line FRII radio galaxy. Our analysis is aimed at investigating the X-ray spectral properties of this peculiar source which have remained poorly known so far. We analyze the 0.5--10 keV spectroscopic data collected by the EPIC cameras in 2006. The X-ray spectrum of this radio-loud quasar is typical of a local Compton-thin Seyfert 2 galaxy. It exhibits strong absorption (Nh~3.5 x 10^{23} cm^{-2}) and a narrow, neutral Fe Kalpha emission line with an equivalent width of ~140+/-40 eV. Our observation also reveals that the soft portion of the spectrum is characterized by strong emission lines with a very low level of scattered primary continuum. A possible explanation of these features in terms of thermal emission from a two-temperature collisionally ionized plasma emission seems to be unlikely due to the high luminosity estimated for this component (L(0.5-2) ~ 6 x 10^{42} erg/s). It is likely that most of the soft X-ray emission originates from a photoionized plasma as commonly observed in obscured, radio-quiet Seyfert-like AGNs. This X-ray observation has definitively confirmed the presence of a hidden quasar in 3C 234. The line-rich spectrum and the steepness of the hard X-ray continuum (Gamma ~ 1.7) found in this source weaken the hypothesis that the bulk ofthe X-ray emission in radio-loud AGNs with high excitation optical lines arises from jet non-thermal emission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا