ﻻ يوجد ملخص باللغة العربية
The aim of this paper is to study the skein exact sequence for knot Floer homology. We prove precise graded version of this sequence, and also one using $HFm$. Moreover, a complete argument is also given purely within the realm of grid diagrams.
We re-derive Manolescus unoriented skein exact triangle for knot Floer homology over F_2 combinatorially using grid diagrams, and extend it to the case with Z coefficients by sign refinements. Iteration of the triangle gives a cube of resolutions tha
Given a knot K in S^3, let u^-(K) (respectively, u^+(K)) denote the minimum number of negative (respectively, positive) crossing changes among all unknotting sequences for K. We use knot Floer homology to construct the invariants l^-(K), l^+(K) and l
We obtain a formula for the Heegaard Floer homology (hat theory) of the three-manifold $Y(K_1,K_2)$ obtained by splicing the complements of the knots $K_isubset Y_i$, $i=1,2$, in terms of the knot Floer homology of $K_1$ and $K_2$. We also present a
We modify the construction of knot Floer homology to produce a one-parameter family of homologies for knots in the three-sphere. These invariants can be used to give homomorphisms from the smooth concordance group to the integers, giving bounds on th
Knot Floer homology is an invariant for knots discovered by the authors and, independently, Jacob Rasmussen. The discovery of this invariant grew naturally out of studying how a certain three-manifold invariant, Heegaard Floer homology, changes as th