ﻻ يوجد ملخص باللغة العربية
We have identified four circumstellar disks with a deficit of dust emission from their inner 15-50 AU. All four stars have F-G spectral type, and were uncovered as part of the Spitzer Space Telescope ``Cores to Disks Legacy Program Infrared Spectrograph (IRS) first look survey of ~100 pre-main sequence stars. Modeling of the spectral energy distributions indicates a reduction in dust density by factors of 100-1000 from disk radii between ~0.4 and 15-50 AU, but with massive gas-rich disks at larger radii. This large contrast between the inner and outer disk has led us to use the term `cold disks to distinguish these unusual systems. However, hot dust [0.02-0.2 Mmoon] is still present close to the central star (R ~0.8 AU). We introduce the 30/13 micron, flux density ratio as a new diagnostic for identifying cold disks. The mechanisms for dust clearing over such large gaps are discussed. Though rare, cold disks are likely in transition from an optically thick to an optically thin state, and so offer excellent laboratories for the study of planet formation.
WISEA J080822.18-644357.3, an M star in the Carina association, exhibits extreme infrared excess and accretion activity at an age greater than the expected accretion disk lifetime. We consider J0808 as the prototypical example of a class of M star ac
We calculate the emission of protoplanetary disks threaded by a poloidal magnetic field and irradiated by the central star. The radial structure of these disks was studied by Shu and collaborators and the vertical structure was studied by Lizano and
The disks around Herbig Ae/Be stars are commonly divided into group I and group II based on their far-infrared spectral energy distribution, and the common interpretation for that is flared and flat disks. Recent observations suggest that many flarin
We model the vertical structure of magnetized accretion disks subject to viscous and resistive heating, and irradiation by the central star. We apply our formalism to the radial structure of magnetized accretion disks threaded by a poloidal magnetic
We present ISO-SWS observations of H2 pure-rotational line emission from the disks around low and intermediate mass pre-main-sequence stars as well as from young stars thought to be surrounded by debris disks. We detect `warm (T ~ 100-200 K) H2 gas a