ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical Rankine Vortex

611   0   0.0 ( 0 )
 نشر من قبل Grover Swartzlander Jr.
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Rankine vortex charateristics of a partially coherent optical vortex are explored using classical and physical optics. Unlike a perfectly coherent vortex mode, the circulation is not quantized. Excess circulation is predicted owing to the wave nature of the composite vortex fields. Based on these findings we propose a vortex stellar interferometer.



قيم البحث

اقرأ أيضاً

Vortex crystals are geometric arrays of vortices found in various physics fields, owing their regular internal structure to mutual interactions within a spatially confined system. In optics, vortex crystals may form spontaneously within a nonlinear r esonator but their usefulness is limited by the lack of control over their topology. On the other hand, programmable devices used in free space, like spatial light modulators, allow the design of nearly arbitrary vortex distributions but without any intrinsic dynamics. By combining non-Hermitian optics with on-demand topological transformations enabled by metasurfaces, we report a solid-state laser that generates vortex crystals with mutual interactions and actively-tunable topologies. We demonstrate 10x10 coherent vortex arrays with nonlocal coupling networks that are not limited to nearest-neighbor coupling but rather dictated by the crystals topology. The vortex crystals exhibit sharp Bragg diffraction peaks, witnessing their coherence and high topological charge purity, which we resolve spatially over the whole lattice by introducing a parallelized analysis technique. By structuring light at the source, we enable complex transformations that allow to arbitrarily partition the orbital angular momentum inside the cavity and to heal topological charge defects, making these resonators a robust and versatile tool for advanced applications in topological optics.
We demonstrated the continuous-wave (cw) and pulsed optical vortex with topological charges driven by heat generated during the lasing process without introducing the astigmatism effect and reducing lasing efficiency. During the lasing process, the t opological charges were changeable by the thermal-induced lens and selected by the mode-matching between the pump and oscillating beams. With a graphene sample as the saturable absorber, the pulsed optical vortex was achieved at the wavelength of 1.36 {mu}m, which identified that graphene could be used as a pulse modulator for the generation of pulsed optical vortex. It could be believed that the thermally driven cw and pulsed optical vortex should have various promising applications based on the compact structure, changeable topological charges and specific wavelength
We report the experimental demonstration of the induced polarization-dependent optical vortex beams. We use the Talbot configuration as a method to probe this effect. In particular, our simple experiment shows the direct measurement of this observati on. Our experiment can exhibit clearly the combination between the polarization and orbital angular momentum (OAM) states of light. This implementation might be useful for further studies in the quantum system or quantum information.
We experimentally generate cylindrically polarized wavepackets with transverse orbital angular momentum, demonstrating the coexistence of spatiotemporal optical vortex with spatial polarization singularity. The results in this paper extend the study of spatiotemporal wavepackets to a broader scope, paving the way for its applications in various areas such as light-matter interaction, optical tweezers, spatiotemporal spin-orbit angular momentum coupling, etc.
Analytical forms of the optical helicity and optical chirality of monochromatic Laguerre-Gaussian optical vortex beams are derived up to second order in the paraxial parameter $kw_0$. We show that input linearly polarised optical vortices which posse ss no optical chirality, helicity or spin densities can acquire them at the focal plane for values of a beam waist $w_0 approx lambda$ via an OAM-SAM conversion which is manifest through longitudinal (with respect to the direction of propagation) fields. We place the results into context with respect to the intrinsic and extrinsic nature of SAM and OAM, respectively; the continuity equation which relates the densities of helicity and spin; and the newly coined term Kelvins chirality which describes the extrinsic, geometrical chirality of structured laser beams. Finally we compare our work (which agrees with previous studies) to the recent article Koksal, et al. Optics Communications 490, 126907 (2021) which shows conflicting results, highlighting the importance of including all relevant terms to a given order in the paraxial parameter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا