ﻻ يوجد ملخص باللغة العربية
We investigate the entanglement of the ferromagnetic XY model in a random magnetic field at zero temperature and in the uniform magnetic field at finite temperatures. We use the concurrence to quantify the entanglement. We find that, in the ferromagnetic region of the uniform magnetic field $h$, all the concurrences are textit{generated} by the random magnetic field and by the thermal fluctuation. In one particular region of $h$, the next-nearest neighbor concurrence is generated by the random field but not at finite temperatures. We also find that the qualitative behavior of the maximum point of the entanglement in the random magnetic field depends on whether the variance of its distribution function is finite or not.
We study the magnetic susceptibility of 1D quantum XY model, and show that when the temperature approaches zero, the magnetic susceptibility exhibits the finite-temperature scaling behavior. This scaling behavior of the magnetic susceptibility in 1D
We report the analogue simulation of an ergodiclocalized junction by using an array of 12 coupled superconducting qubits. To perform the simulation, we fabricated a superconducting quantum processor that is divided into two domains: a driven domain r
We investigate measurement-induced phase transitions in the Quantum Ising chain coupled to a monitoring environment. We compare two different limits of the measurement problem, the stochastic quantum-state diffusion protocol corresponding to infinite
The impurities of exchange couplings, external magnetic fields and Dzyaloshinskii--Moriya (DM) interaction considered as Gaussian distribution, the entanglement in one-dimensional random $XY$ spin systems is investigated by the method of solving the
The time evolution of quantum many-body systems is one of the least understood frontiers of physics. The most curious feature of such dynamics is, generically, the growth of quantum entanglement with time to an amount proportional to the system size