ﻻ يوجد ملخص باللغة العربية
We report the detection of dark energy near the Milky Way made with precision observations of the local Hubble flow of expansion. We estimate the local density of dark energy and find that it is near, if not exactly equal to, the global dark energy density. The result is independent of, compatible with, and complementary to the horizon-scale observations in which dark energy was first discovered. Together with the cosmological concordance data, our result forms direct observational evidence for the Einstein antigravity as a universal phenomenon -- in the same sense as the Newtonian universal gravity.
Polaris, the nearest and brightest classical Cepheid, is a single-lined spectroscopic binary with an orbital period of 30 years. Using the High Resolution Channel of the Advanced Camera for Surveys onboard the Hubble Space Telescope (HST) at a wavele
The Hubble Space Telescope (HST) has proven to be uniquely suited for the measurement of proper motions (PMs) of stars and galaxies in the nearby Universe. Here we summarize the main results and ongoing studies of the HSTPROMO collaboration, which ov
Dark energy must be taken into account to estimate more reliably the amount of dark matter and how it is distributed in the local universe. For systems several Mpc across like the Local Group, we introduce three self-consistent independent mass estim
We present a Hubble Space Telescope/Wide Field Planetary Camera 2 weak-lensing study of A520, where a previous analysis of ground-based data suggested the presence of a dark mass concentration. We map the complex mass structure in much greater detail
We present a new technique for wide and shallow observations using the near-infrared channel of Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). Wide-field near-IR surveys with HST are generally inefficient, as guide star acquisitions