ترغب بنشر مسار تعليمي؟ اضغط هنا

Renormalized Fermi hypernetted chain approach in medium-heavy nuclei

178   0   0.0 ( 0 )
 نشر من قبل Giampaolo Co'
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The application of the Correlated basis function theory and of the Fermi hypernetted chain technique, to the description of the ground state of medium-heavy nuclei is reviewed. We discuss how the formalism, originally developed for symmetric nuclear matter, should be changed in order to describe finite nuclear systems, with different number of protons and neutrons. This approach allows us to describe doubly closed shell nuclei by using microscopic nucleon-nucleon interactions. We presents results of numerical calculations done with two-nucleon interactions of Argonne type,implemented with three-body forces of Urbana type. Our results regard ground-state energies, matter, charge and momentum distributions, natural orbits, occupation numbers, quasi-hole wave functions and spectroscopic factors of 12C, 16O, 40Ca, 48Ca and 208Pb nuclei.



قيم البحث

اقرأ أيضاً

Borromean nuclear cluster structures are expected at the corresponding driplines. We locate the regions in the nuclear chart with the most promising constituents, it being protons and alpha-particles and investigate in details the properties of the p ossible borromean two-alpha systems in medium heavy nuclei. We find in all cases that the alpha-particles are located at the surface of the core-nucleus as dictated by Coulomb and centrifugal barriers. The two lowest three-body bound states resemble a slightly contracted $^{8}text{Be}$ nucleus outside the core. The next two excited states have more complex structures but with strong components of linear configurations with the core in the middle. Alpha-removal cross sections would be enhanced with specific signatures for these two different types of structures. The even-even borromean two-alpha nucleus, $^{142}$Ba, is specifically investigated and predicted to have $^{134}text{Te}-alpha-alpha$ structure in its ground state and low-lying spectrum.
We extend the correlated basis functions theory (CBF) for nuclei with different number of protons and neutrons and in j-j coupling scheme. By means of the Fermi hypernetted chain integral equations, in conjunction with the single operator chain appro ximation (FHNC/SOC), we evaluate the ground state and the one-body densities for 40Ca, 48Ca and 208Pb nuclei. The realistic Argonne V8 two-nucleon potentials has been used. We compare the ground-state properties of these nuclei calculated by using correlation functions with and without tensor components.
77 - C. Bisconti 2006
The correlated basis function theory is applied to the study of medium-heavy doubly closed shell nuclei with different wave functions for protons and neutrons and in the jj coupling scheme. State dependent correlations including tensor correlations a re used. Realistic two-body interactions of Argonne and Urbana type, together with three-body interactions have been used to calculate ground state energies and density distributions of the 12C, 16O, 40Ca, 48Ca and 208Pb nuclei.
123 - M. L. Gorelik 2020
The semimicroscopic particle-hole dispersive optical model (PHDOM) is implemented to describe main properties of Isoscalar Giant Multipole Resonances (up to L=3) in medium-heavy closed-shell nuclei. The main properties are characterized by the streng th distribution, transition density, partial and total probabilities of direct one-nucleon decay. Calculation results obtained for the 208Pb nucleus are compared with available experimental data.
The process at the heart of neutrinoless double-beta decay, $nn rightarrow p p, e^- e^-$ induced by a light Majorana neutrino, is investigated in pionless and chiral effective field theory. We show in various regularization schemes the need to introd uce a short-range lepton-number-violating operator at leading order, confirming earlier findings. We demonstrate that such a short-range operator is only needed in spin-singlet $S$-wave transitions, while leading-order transitions involving higher partial waves depend solely on long-range currents. Calculations are extended to include next-to-leading corrections in perturbation theory, where to this order no additional undetermined parameters appear. We establish a connection based on chiral symmetry between neutrinoless double-beta decay and nuclear charge-independence breaking induced by electromagnetism. Data on the latter confirm the need for a leading-order short-range operator, but do not allow for a full determination of the corresponding lepton-number-violating coupling. Using a crude estimate of this coupling, we perform ab initio calculations of the matrix elements for neutrinoless double-beta decay for $^6$He and $^{12}$Be. We speculate on the phenomenological impact of the leading short-range operator on the basis of these results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا