ترغب بنشر مسار تعليمي؟ اضغط هنا

An asteroseismic study of the beta Cephei star theta Ophiuchi: constraints on global stellar parameters and core overshooting

473   0   0.0 ( 0 )
 نشر من قبل Maryline Briquet
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a seismic study of the beta Cephei star theta Ophiuchi. Our analysis is based on the observation of one radial mode, one rotationally split l = 1 triplet and three components of a rotationally split l = 2 quintuplet for which the m-values were well identified by spectroscopy. We identify the radial mode as fundamental, the triplet as p_1 and the quintuplet as g_1. Our NLTE abundance analysis results in a metallicity and CNO abundances in full agreement with the most recent updated solar values. With X in [0.71,0.7211] and Z in [0.009,0.015], and using the Asplund et al. (2005) mixture but with a Ne abundance about 0.3 dex larger (Cunha et al. 2006), the matching of the three independent modes, enables us to deduce constrained ranges for the mass (M = 8.2 +/- 0.3 Msun) and central hydrogen abundance (X_c = 0.38 +/- 0.02) of theta Oph and to prove the occurrence of core overshooting (alpha_ov = 0.44 +/- 0.07). We also derive an equatorial rotation velocity of 29 +/- 7 km/s. Moreover, we show that the observed non-equidistance of the l=1 triplet can be reproduced by second order effects of rotation. Finally, we show that the observed rotational splitting of two modes cannot rule out a rigid rotation model.



قيم البحث

اقرأ أيضاً

We present results of a {bf comprehensive} asteroseismic modelling of the $beta$ Cephei variable $theta$ Ophiuchi. {bf We call these studies {it complex asteroseismology} because our goal is to reproduce both pulsational frequencies as well as corres ponding values of a complex, nonadiabatic parameter, $f$, defined by the radiative flux perturbation.} To this end, we apply the method of simultaneous determination of the spherical harmonic degree, $ell$, of excited pulsational mode and the corresponding nonadiabatic $f$ parameter from combined multicolour photometry and radial velocity data. Using both the OP and OPAL opacity data, we find a family of seismic models which reproduce the radial and dipole centroid mode frequencies, as well as the $f$ parameter associated with the radial mode. Adding the nonadiabatic parameter to seismic modelling of the B-type main sequence pulsators yields very strong constraints on stellar opacities. In particular, only with one source of opacities it is possible to agree the empirical values of $f$ with their theoretical counterparts. Our results for $theta$ Oph point substantially to preference for the OPAL data.
99 - M. Desmet , M. Briquet , A. Thoul 2009
We present the results of a spectroscopic multisite campaign for the beta Cephei star 12 (DD) Lacertae. Our study is based on more than thousand high-resolution high S/N spectra gathered with 8 different telescopes in a time span of 11 months. In add ition we make use of numerous archival spectroscopic measurements. We confirm 10 independent frequencies recently discovered from photometry, as well as harmonics and combination frequencies. In particular, the SPB-like g-mode with frequency 0.3428 1/d reported before is detected in our spectroscopy. We identify the four main modes as (l1,m1) = (1, 1), (l2,m2) = (0, 0), (l3,m3) = (1, 0) and (l4,m4) = (2, 1) for f1 = 5.178964 1/d, f2 = 5.334224 1/d, f3 = 5.066316 1/d and f4 = 5.490133 1/d, respectively. Our seismic modelling shows that f2 is likely the radial first overtone and that the core overshooting parameter alpha_ov is lower than 0.4 local pressure scale heights.
70 - Antonio Claret 2016
Convective core overshooting extends the main-sequence lifetime of a star. Evolutionary tracks computed with overshooting are quite different from those that use the classical Schwarzschild criterion, which leads to rather different predictions for t he stellar properties. Attempts over the last two decades to calibrate the degree of overshooting with stellar mass using detached double-lined eclipsing binaries have been largely inconclusive, mainly due to a lack of suitable observational data. Here we revisit the question of a possible mass dependence of overshooting with a more complete sample of binaries, and examine any additional relation there might be with evolutionary state or metal abundance Z. We use a carefully selected sample of 33 double-lined eclipsing binaries strategically positioned in the H-R diagram, with accurate absolute dimensions and component masses ranging from 1.2 to 4.4 solar masses. We compare their measured properties with stellar evolution calculations to infer semi-empirical values of the overshooting parameter alpha(ov) for each star. Our models use the common prescription for the overshoot distance d(ov) = alpha(ov) Hp, where Hp is the pressure scale height at the edge of the convective core as given by the Schwarzschild criterion, and alpha(ov) is a free parameter. We find a relation between alpha(ov) and mass that is defined much more clearly than in previous work, and indicates a significant rise up to about 2 solar masses followed by little or no change beyond this mass. No appreciable dependence is seen with evolutionary state at a given mass, or with metallicity at a given mass despite the fact that the stars in our sample span a range of a factor of ten in [Fe/H], from -1.01 to +0.01.
227 - C.C. Lovekin , M.-J. Goupil 2010
(abridged) Recent work on several beta Cephei stars has succeeded in constraining both their interior rotation profile and their convective core overshoot. In particular, a recent study focusing on theta$ Oph has shown that a convective core overshoo t parameter of alpha = 0.44 is required to model the observed pulsation frequencies, significantly higher than for other stars of this type. We investigate the effects of rotation and overshoot in early type main sequence pulsators, and attempt to use the low order pulsation frequencies to constrain these parameters. This will be applied to a few test models and theta Oph. We use a 2D stellar evolution code and a 2D linear adiabatic pulsation code to calculate pulsation frequencies for 9.5 Msun models. We calculate low order p-modes for models with a range of rotation rates and convective core overshoot parameters. Using these models, we find that the convective core overshoot has a larger effect on the pulsation frequencies than the rotation, except in the most rapidly rotating models considered. When the differences in radii are accounted for by scaling the frequencies, the effects of rotation diminish, but are not entirely accounted for. We find that increasing the convective core overshoot decreases the large separation, while producing a slight increase in the small separations. We created a model frequency grid which spanned several rotation rates and convective core overshoot values. Using a modified chi^2 statistic, we are able to recover the rotation velocity and core overshoot for a few test models. Finally, we discuss the case of the beta Cephei star theta Oph. Using the observed frequencies and a fixed mass and metallicity, we find a lower overshoot than previously determined, with alpha = 0.28 +/- 0.05. Our determination of the rotation rate agrees well with both previous work and observations, around 30 km/s.
Overshooting from the convective cores of stars more massive than about 1.2 M(Sun) has a profound impact on their subsequent evolution. And yet, the formulation of the overshooting mechanism in current stellar evolution models has a free parameter (f [ov] in the diffusive approximation) that remains poorly constrained by observations, affecting the determination of astrophysically important quantities such as stellar ages. In an earlier series of papers we assembled a sample of 37 well-measured detached eclipsing binaries to calibrate the dependence of f[ov] on stellar mass, showing that it increases sharply up to a mass of roughly 2 M(Sun), and remains constant thereafter out to at least 4.4 M(Sun). Recent claims have challenged the utility of eclipsing binaries for this purpose, on the basis that the uncertainties in f[ov] from the model fits are typically too large to be useful, casting doubt on a dependence of overshooting on mass. Here we reexamine those claims and show them to be too pessimistic, mainly because they did not account for all available constraints --- both observational and theoretical --- in assessing the true uncertainties. We also take the opportunity to add semi-empirical f[ov] determinations for 13 additional binaries to our previous sample, and to update the values for 9 others. All are consistent with, and strengthen our previous conclusions, supporting a dependence of f[ov] on mass that is now based on estimates for a total of 50 binary systems (100 stars).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا