ترغب بنشر مسار تعليمي؟ اضغط هنا

Millisecond pulsars around intermediate-mass black holes in globular clusters

232   0   0.0 ( 0 )
 نشر من قبل Bernadetta Devecchi
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the process of dynamical capture of a millisecond pulsar (MSP) by a single or binary IMBH, simulating various types of single-binary and binary-binary encounters. It is found that [IMBH,MSP] binaries form over cosmic time in a cluster, via encounters of wide--orbit binary MSPs off the single IMBH, and at a lower pace, via interactions of (binary or single) MSPs with the IMBH orbited by a typical cluster star. The formation of an [IMBH,MSP] system is strongly inhibited if the IMBH is orbited by a stellar mass black hole. The [IMBH,MSP] binaries that form are relatively short-lived, $lsim 10^{8-9}$ yr, since their orbits decay via emission of gravitational waves. The detection of an [IMBH,MSP] system has a low probability of occurrence, when inferred from the current sample of MSPs in GCs. If next generation radio telescopes, like SKA, will detect an order of magnitude larger population of MSP in GCs, at least one [IMBH,MSP] is expected. Therefore, a complete search for low-luminosity MSPs in the GCs of the Milky Way with SKA will have the potential of testing the hypothesis that IMBHs of order $100 msun$ are commonly hosted in GCs.



قيم البحث

اقرأ أيضاً

Over a hundred millisecond radio pulsars (MSPs) have been observed in globular clusters (GCs), motivating theoretical studies of the formation and evolution of these sources through stellar evolution coupled to stellar dynamics. Here we study MSPs in GCs using realistic $N$-body simulations with our Cluster Monte Carlo code. We show that neutron stars (NSs) formed in electron-capture supernovae (including both accretion-induced and merger-induced collapse of white dwarfs) can be spun up through mass transfer to form MSPs. Both NS formation and spin-up through accretion are greatly enhanced through dynamical interaction processes. We find that our models for average GCs at the present day with masses $approx 2 times 10^5,M_odot$ can produce up to $10-20$ MSPs, while a very massive GC model with mass $approx 10^6,M_odot$ can produce close to $100$. We show that the number of MSPs is anti-correlated with the total number of stellar-mass black holes (BHs) retained in the host cluster. The radial distributions are also affected: MSPs are more concentrated towards the center in a host cluster with a smaller number of retained BHs. As a result, the number of MSPs in a GC could be used to place constraints on its BH population. Some intrinsic properties of MSP systems in our models (such as the magnetic fields and spin periods) are in good overall agreement with observations, while others (such as the distribution of binary companion types) less so, and we discuss the possible reasons for such discrepancies. Interestingly, our models also demonstrate the possibility of dynamically forming NS--NS and NS--BH binaries in GCs, although the predicted numbers are very small.
For a sample of nine Galactic globular clusters we measured the inner kinematic profiles with integral-field spectroscopy that we combined with existing outer kinematic measurements and HST luminosity profiles. With this information we are able to de tect the crucial rise in the velocity-dispersion profile which indicates the presence of a central black hole. In addition, N-body simulations compared to our data will give us a deeper insight in the properties of clusters with black holes and stronger selection criteria for further studies. For the first time, we obtain a homogeneous sample of globular cluster integral- field spectroscopy which allows a direct comparison between clusters with and without an intermediate-mass black hole.
Decades after the first predictions of intermediate-mass black holes (IMBHs) in globular clusters (GCs) there is still no unambiguous observational evidence for their existence. The most promising signatures for IMBHs are found in the cores of GCs, w here the evidence now comes from the stellar velocity distribution, the surface density profile, and, for very deep observations, the mass-segregation profile near the cluster center. However, interpretation of the data, and, in particular, constraints on central IMBH masses, require the use of detailed cluster dynamical models. Here we present results from Monte Carlo cluster simulations of GCs that harbor IMBHs. As an example of application, we compare velocity dispersion, surface brightness and mass-segregation profiles with observations of the GC M10, and constrain the mass of a possible central IMBH in this cluster. We find that, although M10 does not seem to possess a cuspy surface density profile, the presence of an IMBH with a mass up to 0.75% of the total cluster mass, corresponding to about 600 Msun, cannot be excluded. This is also in agreement with the surface brightness profile, although we find it to be less constraining, as it is dominated by the light of giants, causing it to fluctuate significantly. We also find that the mass-segregation profile cannot be used to discriminate between models with and without IMBH. The reason is that M10 is not yet dynamically evolved enough for the quenching of mass segregation to take effect. Finally, detecting a velocity dispersion cusp in clusters with central densities as low as in M10 is extremely challenging, and has to rely on only 20-40 bright stars. It is only when stars with masses down to 0.3 Msun are included that the velocity cusp is sampled close enough to the IMBH for a significant increase above the core velocity dispersion to become detectable.
Intermediate-mass black holes (IMBHs) have masses of about 100 to 100,000 solar masses. They remain elusive. Observing IMBHs in present-day globular clusters (GCs) would validate a formation channel for seed black holes in the early universe and info rm event predictions for gravitational wave facilities. Reaching a large number of GCs per galaxy is key, as models predict that only a few percent will have retained their gravitational-wave fostering IMBHs. Related, many galaxies will need to be examined to establish a robust sample of IMBHs in GCs. These needs can be meet by using a next-generation Very Large Array (ngVLA) to search for IMBHs in the GCs of hundreds of galaxies out to a distance of 25 Mpc. These galaxies hold tens of thousands of GCs in total. We describe how to convert an ngVLA signal from a GC to an IMBH mass according to a semi-empirical accretion model. Simulations of gas flows in GCs would help to improve the robustness of the conversion. Also, self-consistent dynamical models of GCs, with stellar and binary evolution in the presence of IMBHs, would help to improve IMBH retention predictions for present-day GCs.
The study of intermediate-mass black holes (IMBHs) is a young and promising field of research. Formed by runaway collisions of massive stars in young and dense stellar clusters, intermediate-mass black holes could still be present in the centers of g lobular clusters, today. Our group investigated the presence of intermediate-mass black holes for a sample of 10 Galactic globular clusters. We measured the inner kinematic profiles with integral-field spectroscopy and determined masses or upper limits of central black holes in each cluster. In combination with literature data we further studied the positions of our results on known black-hole scaling relations (such as M_bh - sigma) and found a similar but flatter correlation for IMBHs. Applying cluster evolution codes, the change in the slope could be explained with the stellar mass loss occurring in clusters in a tidal field over its life time. Furthermore, we present results from several numerical simulations on the topic of IMBHs and integral field units (IFUs). We ran N-body simulations of globular clusters containing IMBHs in a tidal field and studied their effects on mass-loss rates and remnant fractions and showed that an IMBH in the center prevents core collapse and ejects massive objects more rapidly. These simulations were further used to simulate IFU data cubes. For the specific case of NGC 6388 we simulated two different IFU techniques and found that velocity dispersion measurements from individual velocities are strongly biased towards lower values due to blends of neighbouring stars and background light. In addition, we use the Astrophysical Multipurpose Software Environment (AMUSE) to combine gravitational physics, stellar evolution and hydrodynamics to simulate the accretion of stellar winds onto a black hole.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا