ﻻ يوجد ملخص باللغة العربية
We have investigated ion current rectification properties of a recently prepared bipolar nanofluidic diode. This device is based on a single conically shaped nanopore in a polymer film whose pore walls contain a sharp boundary between positively and negatively charged regions. A semi-quantitative model that employs Poisson and Nernst-Plank equations predicts current-voltage curves as well as ionic concentrations and electric potential distributions in this system. We show that under certain conditions the rectification degree, defined as a ratio of currents recorded at the same voltage but opposite polarities, can reach values of over a 1000 at a voltage range <-2 V, +2 V>. The role of thickness and position of the transition zone on the ion current rectification is discussed as well. We also show that rectification degree scales with the applied voltage.
Recent experiments with electrolytes driven through conical nanopores give evidence of strong rectified current response. In such devices, the asymmetry in the confinement is responsible of the non-Ohmic response, suggesting that the interplay of ent
Ion transport in biological and synthetic nanochannels is characterized by phenomena such as ion current fluctuations and rectification. Recently, it has been demonstrated that nanofabricated synthetic pores can mimic transport properties of biologic
We report the realization of an ultra-efficient low-temperature hybrid heat current rectifier, thermal counterpart of the well-known electric diode. Our design is based on a tunnel junction between two different elements: a normal metal and a superco
We develop a modified Poisson-Nernst-Planck model which includes both the long-range Coulomb and short-range hard-sphere correlations in its free energy functional such that the model can accurately describe the ion transport in complex environment a
We study global dynamics of the Poisson-Nernst-Planck (PNP) system for flows of two types of ions through a narrow tubular-like membrane channel. As the radius of the cross-section of the three-dimensional tubular-like membrane channel approaches zer