ﻻ يوجد ملخص باللغة العربية
For investigation of electron transport on the nanoscale, a system possessing a simple to interpret electronic structure is composed of alkane chains bridging two electrodes via end groups; to date the majority of experiments and theoretical investigations on such structures have considered thiols bonding to gold electrodes. Recently experiments show that well defined molecular conductances may be resolved if the thiol end groups are replaced by amines. In this theoretical study, we investigate the bonding of amine groups to gold clusters and calculate electron transport across the resulting tunnel junctions. We find very good agreement with recent experiments for alkane diamines and discuss differences with respect to the alkane dithiol system.
The measured conductance distribution for single molecule benzenediamine-gold junctions, based on 59,000 individual conductance traces recorded while breaking a gold point contact in solution, has a clear peak at 0.0064 G$_{0}$ with a width of $pm$ 4
Voice-controlled house-hold devices, like Amazon Echo or Google Home, face the problem of performing speech recognition of device-directed speech in the presence of interfering background speech, i.e., background noise and interfering speech from ano
Using the embedded-atom method, the structure of small copper clusters on Au(111) electrodes has been investigated both by static and dynamic calculations. By varying the size of roughly circular clusters, the edge energy per atom is obtained; it agr
Single atoms and few-atom nanoclusters are of high interest in catalysis and plasmonics, but pathways for their fabrication and stable placement remain scarce. We report here the self-assembly of room-temperature-stable single indium (In) atoms and f
When a low-dimensional polaritonic material is placed in proximity to a highly conductive metal, polariton modes couple to their images in the metal, forming highly compressed image polaritons. So far, near-field mapping has been used to observe such