ترغب بنشر مسار تعليمي؟ اضغط هنا

Multijet events in the k_T-factorisation scheme

132   0   0.0 ( 0 )
 نشر من قبل Stefan H\\\"oche
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A Markovian Monte Carlo algorithm for multi-parton production in the high-energy limit is proposed and the matching with unintegrated parton densities is discussed.



قيم البحث

اقرأ أيضاً

70 - R. Kuhn 2000
A Monte-Carlo event-generator has been developed which is dedicated to simulate electron-positron annihilations. Especially a new approach for the combination of matrix elements and parton showers ensures the independence of the hadronization paramet ers from the CMS energy. This enables for the first time the description of multijet-topologies, e.g. four jet angles, over a wide range of energy, without changing any parameter of the model. Covering all processes of the standard model our simulator is capable to describe experiments at present and future accelerators, i.e. the LEP collider and a possible Next Linear Collider(NLC).
We consider electro-weak Higgs plus three jets production at NLO QCD beyond strict VBF acceptance cuts. We investigate, for the first time, how accurate the VBF approximation is in these regions and within perturbative uncertainties, by a detailed co mparison of full and approximate calculations. We find that a rapidity gap between the tagging jets guarantees a good approximation, while an invariant mass cut alone is not sufficient, which needs to be confronted with experimental choices. We also find that a significant part of the QCD corrections can be attributed to Higgs-Strahlungs-type topologies.
176 - S.P. Baranov 2008
We study the production of prompt photons at high energy in the framework of the k_T-factorization approach. The amplitude for production of a single photon associated with quark pair in the fusion of two off-shell gluons is calculated. Theoretical results are compared with the Tevatron data.
168 - J. Bartels 2007
We discuss the inclusive production of jets in the central region of rapidity in the context of k_T-factorization at next-to-leading order (NLO). Calculations are performed in the Regge limit making use of the NLO BFKL results. We introduce a jet con e definition and carry out a proper phase--space separation into multi-Regge and quasi-multi-Regge kinematic regions. We discuss two situations: scattering of highly virtual photons, which requires a symmetric energy scale to separate impact factors from the gluon Greens function, and hadron-hadron collisions, where a non-symmetric scale choice is needed.
We compare the theoretical status and the numerical predictions of two approaches for heavy quark production in the high energy hadron collisions, namely the conventional LO parton model with collinear approximation and $k_T$-factorization approach. The main assumptions used in the calculations are discussed. To extract the differences coming from the matrix elements we use very simple gluon structure function and fixed coupling. It is shown that the $k_T$-factorization approach calculated formally in LO and with Sudakov form factor accounts for many contributions related usually to NLO (and even NNLO) processes of the conventional parton model
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا