ترغب بنشر مسار تعليمي؟ اضغط هنا

TRUFAS, a wavelet based algorithm for the rapid detection of planetary transits

140   0   0.0 ( 0 )
 نشر من قبل Hans J. Deeg
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. Regulo




اسأل ChatGPT حول البحث

Aims: We describe a fast, robust and automatic detection algorithm, TRUFAS, and apply it to data that are being expected from the CoRoT mission. Methods: The procedure proposed for the detection of planetary transits in light curves works in two steps: 1) a continuous wavelet transformation of the detrended light curve with posterior selection of the optimum scale for transit detection, and 2) a period search in that selected wavelet transformation. The detrending of the light curves are based on Fourier filtering or a discrete wavelet transformation. TRUFAS requires the presence of at least 3 transit events in the data. Results: The proposed algorithm is shown to identify reliably and quickly the transits that had been included in a standard set of 999 light curves that simulate CoRoT data. Variations in the pre-processing of the light curves and in the selection of the scale of the wavelet transform have only little effect on TRUFAS results. Conclusions: TRUFAS is a robust and quick transit detection algorithm, especially well suited for the analysis of very large volumes of data from space or ground-based experiments, with long enough durations for the target-planets to produce multiple transit events.



قيم البحث

اقرأ أيضاً

Wavelets are scaleable, oscillatory functions that deviate from zero only within a limited spatial regime and have average value zero. In addition to their use as source characterizers, wavelet functions are rapidly gaining currency within the source detection field. Wavelet-based source detection involves the correlation of scaled wavelet functions with binned, two-dimensional image data. If the chosen wavelet function exhibits the property of vanishing moments, significantly non-zero correlation coefficients will be observed only where there are high-order variations in the data; e.g., they will be observed in the vicinity of sources. In this paper, we describe the mission-independent, wavelet-based source detection algorithm WAVDETECT, part of the CIAO software package. Aspects of our algorithm include: (1) the computation of local, exposure-corrected normalized (i.e. flat-fielded) background maps; (2) the correction for exposure variations within the field-of-view; (3) its applicability within the low-counts regime, as it does not require a minimum number of background counts per pixel for the accurate computation of source detection thresholds; (4) the generation of a source list in a manner that does not depend upon a detailed knowledge of the point spread function (PSF) shape; and (5) error analysis. These features make our algorithm considerably more general than previous methods developed for the analysis of X-ray image data, especially in the low count regime. We demonstrate the algorithms robustness by applying it to various images.
We have developed a new method to improve the transit detection of Earth-sized planets in front of solar-like stars by fitting stellar microvariability by means of a spot model. A large Monte Carlo numerical experiment has been designed to test the p erformance of our approach in comparison with other variability filters and fitting techniques for stars of different magnitudes and planets of different radius and orbital period, as observed by the space missions CoRoT and Kepler. Here we report on the results of this experiment.
We present results from 30 nights of observations of the open cluster NGC 7789 with the WFC camera on the INT telescope in La Palma. From ~900 epochs, we obtained lightcurves and Sloan r-i colours for ~33000 stars, with ~2400 stars with better than 1 % precision. We expected to detect ~2 transiting hot Jupiter planets if 1% of stars host such a companion and that a typical hot Jupiter radius is ~1.2RJ. We find 24 transit candidates, 14 of which we can assign a period. We rule out the transiting planet model for 21 of these candidates using various robust arguments. For 2 candidates we are unable to decide on their nature, although it seems most likely that they are eclipsing binaries as well. We have one candidate exhibiting a single eclipse for which we derive a radius of 1.81+0.09-0.00RJ. Three candidates remain that require follow-up observations in order to determine their nature.
Observations of TRES-1b transits made during the late summer and fall 2004 observing season reveal a statistically significant but low amplitude brightening event during egress.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا