ترغب بنشر مسار تعليمي؟ اضغط هنا

New flaring of an ultraluminous X-ray source in NGC 1365

159   0   0.0 ( 0 )
 نشر من قبل Roberto Soria
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. Soria




اسأل ChatGPT حول البحث

We have studied a highly variable ultraluminous X-ray source (ULX) in the Fornax galaxy NGC 1365, with a series of 12 Chandra and XMM-Newton observations between 2002 and 2006. In 2006 April, the source peaked at a luminosity ~ 3 x 10^{40} erg/s in the 0.3-10 keV band (similar to the maximum luminosity found by ASCA in 1995), and declined on an e-folding timescale ~ 3 days. The X-ray spectrum is always dominated by a broad power-law-like component. When the source is seen at X-ray luminosities ~ 10^{40} erg/s, an additional soft thermal component (which we interpret as emission from the accretion disk) contributes ~ 1/4 of the X-ray flux; when the luminosity is higher, ~ 3 x 10^{40} erg/s, the thermal component is not detected and must contribute < 10% of the flux. At the beginning of the decline, ionized absorption is detected around 0.5-2 keV; it is a possible signature of a massive outflow. The power-law is always hard, with a photon index Gamma ~ 1.7 (and even flatter at times), as is generally the case with bright ULXs. We speculate that this source and perhaps most other bright ULXs are in a high/hard state: as the accretion rate increases well above the Eddington limit, more and more power is extracted from the inner region of the inflow through non-radiative channels, and is used to power a Comptonizing corona, jet or wind. The observed thermal component comes from the standard outer disk; the transition radius between outer standard disk and Comptonizing inner region moves further out and to lower disk temperatures as the accretion rate increases. This produces the observed appearance of a large, cool disk. Based on X-ray luminosity and spectral arguments, we suggest that this accreting black hole has a likely mass ~ 50-150 Msun (even without accounting for possible beaming).



قيم البحث

اقرأ أيضاً

Ultraluminous X-ray sources are considered amongst the most extremely accreting objects in the local Universe. The recent discoveries of pulsating neutron stars in ULXs strengthened the scenario of highly super-Eddington accretion mechanisms on stell ar mass compact objects. In this work, we present the first long-term light curve of the source NGC 4559 X7 using all the available Swift, XMM-Newton, Chandra and NuSTAR data. Thanks to the high quality 2019 XMM-Newton and NuSTAR observations, we investigated in an unprecedented way the spectral and temporal properties of NGC 4559 X7. The source displayed flux variations of up to an order of magnitude and an unusual flaring activity. We modelled the spectra from NGC 4559 X7 with a combination of two thermal components, testing also the addition of a further high energy cut-off powerlaw. We observed a spectral hardening associated with a luminosity increase during the flares, and a spectral softening in the epochs far from the flares. Narrow absorption and emission lines were also found in the RGS spectra, suggesting the presence of an outflow. Furthermore, we measured hard and (weak) soft lags with magnitudes of a few hundreds of seconds whose origin is possibly be due to the accretion flow. We interpret the source properties in terms of a super-Eddington accretion scenario assuming the compact object is either a light stellar mass black hole or a neutron star.
We report on the discovery of a new, transient ultraluminous X-ray source (ULX) in the galaxy NGC 7090. This new ULX, which we refer to as NGC 7090 ULX3, was discovered via monitoring with $Swift$ during 2019-20, and to date has exhibited a peak lumi nosity of $L_{rm{X}} sim 6 times 10^{39}$ erg s$^{-1}$. Archival searches show that, prior to its recent transition into the ULX regime, ULX3 appeared to exhibit a fairly stable luminosity of $L_{rm{X}} sim 10^{38}$ erg s$^{-1}$. Such strong long-timescale variability may be reminiscent of the small population of known ULX pulsars, although deep follow-up observations with $XMM$-$Newton$ and $NuSTAR$ do not reveal any robust X-ray pulsation signals. Pulsations similar to those seen from known ULX pulsars cannot be completely excluded, however, as the limit on the pulsed fraction of any signal that remains undetected in these data is $lesssim$20%. The broadband spectrum from these observations is well modelled with a simple thin disc model, consistent with sub-Eddington accretion, which may instead imply a moderately large black hole accretor ($M_{rm{BH}} sim 40 ~ M_{odot}$). Similarly, though, more complex models consistent with the super-Eddington spectra seen in other ULXs (and the known ULX pulsars) cannot be excluded given the limited signal-to-noise of the available broadband data. The nature of the accretor powering this new ULX therefore remains uncertain.
138 - Iskra V. Strateva 2008
We present 26 point-sources discovered with Chandra within 200 (~20kpc) of the center of the barred supergiant galaxy NGC 1365. The majority of these sources are high-mass X-ray binaries, containing a neutron star or a black hole accreting from a lum inous companion at a sub-Eddington rate. Using repeat Chandra and XMM-Newton as well as optical observations, we discuss in detail the natures of two highly-variable ultraluminous X-ray sources (ULXs): NGC 1365 X1, one of the most luminous ULXs known since the ROSAT era, which is X-ray variable by a factor of 30, and NGC 1365 X2, a newly discovered transient ULX, variable by a factor of >90. Their maximum X-ray luminosities (3-5 x 10^40 erg/s, measured with Chandra) and multiwavelength properties suggest the presence of more exotic objects and accretion modes: accretion onto intermediate mass black holes (IMBHs) and beamed/super-Eddington accretion onto solar-mass compact remnants. We argue that these two sources have black-hole masses higher than those of the typical primaries found in X-ray binaries in our Galaxy (which have masses of <20 Msolar), with a likely black-hole mass of 40-60 Msolar in the case of NGC 1365 X1 with a beamed/super-Eddington accretion mode, and a possible IMBH in the case of NGC 1365 X2 with M=80-500Msolar.
We report on the serendipitous discovery of a new transient in NGC 5907, at a peak luminosity of 6.4x10^{39} erg/s. The source was undetected in previous 2012 Chandra observations with a 3 sigma upper limit on the luminosity of 1.5x10^{38} erg/s, imp lying a flux increase of a factor of >35. We analyzed three recent 60ks/50ks Chandra and 50ks XMM-Newton observations, as well as all the available Swift observations performed between August 2017/March 2018. Until the first half of October 2017, Swift observations do not show any emission from the source. The transient entered the ULX regime in less than two weeks and its outburst was still on-going at the end of February 2018. The 0.3-10 keV spectrum is consistent with a single multicolour blackbody disc (kT~1.5 keV). The source might be a ~30 solar mass black hole accreting at the Eddington limit. However, although we did not find evidence of pulsations, we cannot rule-out the possibility that this ULX hosts an accreting neutron star.
334 - Andrew D. Sutton 2013
We present a multi-mission X-ray analysis of a bright (peak observed 0.3-10 keV luminosity of ~ 6x10^{40} erg s^{-1}), but relatively highly absorbed ULX in the edge-on spiral galaxy NGC 5907. The ULX is spectrally hard in X-rays (Gamma ~ 1.2-1.7, wh en fitted with an absorbed power-law), and has a previously-reported hard spectral break consistent with it being in the ultraluminous accretion state. It is also relatively highly absorbed for a ULX, with a column of ~ 0.4-0.9x10^{22} atom cm^{-2} in addition to the line-of-sight column in our Galaxy. Although its X-ray spectra are well represented by accretion disc models, its variability characteristics argue against this interpretation. The ULX spectra instead appear dominated by a cool, optically-thick Comptonising corona. We discuss how the measured 9 per cent rms variability and a hardening of the spectrum as its flux diminishes might be reconciled with the effects of a very massive, radiatively-driven wind, and subtle changes in the corona respectively. We speculate that the cool disc-like spectral component thought to be produced by the wind in other ULXs may be missing from the observed spectrum due to a combination of a low temperature (~ 0.1 keV), and the high column to the ULX. We find no evidence, other than its extreme X-ray luminosity, for the presence of an intermediate mass black hole (~ 10^2 - 10^4 Msun) in this object. Rather, the observations can be consistently explained by a massive (greater than ~ 20 Msun) stellar remnant black hole in a super-Eddington accretion state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا