ﻻ يوجد ملخص باللغة العربية
We study interactions of unparticles ${cal {U}}$ of dimension $d_{cal {U}}$ due to Georgi with Standard Model (SM) fields through effective operators. The unparticles describe the low energy physics of a non-trivial scale invariant sector. Since unparticles come from beyond the SM physics, it is plausible that they transform as a singlet under the SM gauge group. This helps tremendously in limiting possible interactions. We analyze interactions of scalar ${cal {U}}$, vector ${cal {U}}$$^mu$ and spinor ${cal {U}}$$^s$ unparticles with SM fields and derivatives up to dimension four. Using these operators, we discuss different features of producing unparticles at $e^+ e^-$ collider and other phenomenologies. It is possible to distinguish different unparticles produced at $e^+e^-$ collider by looking at various distributions of production cross sections.
These are the notes of a set of four lectures which I gave at the 2012 CERN Summer School of Particle Physics. They cover the basic ideas of gauge symmetries and the phenomenon of spontaneous symmetry breaking which are used in the construction of the Standard Model of the Electro-Weak Interactions.
The tremendous phenomenological success of the Standard Model (SM) suggests that its flavor structure and gauge interactions may not be arbitrary but should have a fundamental first-principle explanation. In this work, we explore how the basic distin
We explore the possibility that scale symmetry is a quantum symmetry that is broken only spontaneously and apply this idea to the Standard Model (SM). We compute the quantum corrections to the potential of the higgs field ($phi$) in the classically s
We investigate asymptotically safe extensions of the Standard Model with new matter fields arising in the TeV energy range. The new sector contains singlet scalars and vector-like fermions in representations which permit Yukawa interactions with the
We investigate how non-standard neutrino interactions (NSIs) with matter can be generated by new physics beyond the Standard Model (SM) and analyse the constraints on the NSIs in these SM extensions. We focus on tree-level realisations of lepton numb